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Abstract: A small scale, high precision co-ordinate table was developed as part of a project 
to solve measurement problems originating from microtechnic. Construction with a single 
reference surface was selected and vacuum preloaded air bearing applied in order to 
enable smooth motion and eliminate stick slip. Laser interferometers were applied to 
measure both the displacement and the angular error. The paper describes the 
mathematical evaluation of the measuring system’s error and how that is taken into 
account in the evaluation software. 
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1 Introduction 

Co-ordinate metrology is today a firmly established technique in industry. The 
universal applicability and high degree of automation accounts for it’s succes. 
Two other factors are equally important: tolerances are becomming closer as a 
result of interchangeable manufacturing and the increase of subcontracting is 
obliging manufacturers to assume responsibility for the dimensional integrity of 
their parts. With  the appearance of micromachined mechanical elements 
increased demand can be observed for higher resolution and more accurate 
inspection of these parts. 

2 The Table Construction 

For many reasons ultra precise X-Y tables are guided by a flat reference surface. 
These tables usually employ vacuum or magnetically preloaded air bearings. Their 
advantage is that only one flat guide surface is necessary, whereas the opposed 



bearing preloading requires two flat guide surfaces that are parallel. Other 
advantages of the air bearings are the zero static friction, which makes infinite 
resolution and the very high repeatability possible. Moreover porous air bearings 
average the errors of the guide surface finish and irregularities. 

In our case, the table has four legs and rests on four vacuum preloaded flat porous 
air bearings. The porous carbon in the bearing produces a uniform air pressure 
across the face of the bearing while automatically restricting and damping the air 
flow at the same time. As a consequence the possibility of collapse is reduced and 
a higher pitch moment stiffness is reached. 

As a reference surface a 000 class granite[1] control surface plate, having an 
overall flatness of less then 2 µm, is used and the axes are driven by linear motors. 

The window in the moving part of the table enables the installation of a back 
lighting LED panel. 
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Figure 1 
The mechanical construction 

 



3 The Measuring System 

The table position is determined by two plane mirror laser interferometers, a 
single- and a dualbeam, relative to the measuring frame fixed to the granite base. 
The laser sources are coupled to the sensor heads via fiberoptic cables. 

The single beam interferometer enables a displacement measurement along one 
axis with a resolution of 1 nm (under ideal environmental conditions) while the 
dualbeam interferometer allows the simultaneous displacement and angular 
measurement. The angular resolution is approximately 0.05 arcsec. The measuring 
range is 100 mm and ±2 arcmin respectively. 
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Figure 2 
The outline of the measuring system 

 



4 The Geometric Model of the Measuring System 
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Figure 3 
The geometric model 

Where: 

• X ref and Y ref are X the Y axis of the measuring frame co-ordinate system 

• X table and Y table are X the Y axis of the table co-ordinate system 

 and Y  are the co-ordinates of the table coordinate system’s origo • Xc c

 and Y • X off off are the positions of the interferometers along the measuring 
frame axis 

• d is the separation between the two beams in the dualbeam interferometer 

• Lx1, Lx2 and Ly are the displacements measured by the interferometer 

• Tsize is the table size 

Let us in the first instance assume that the roll and pitch error of the table is 
negligable. From Fig. 3 the following two equation for the origo of the table co-
ordinate system axis can be seen: 

Xc -Lx2
Yoff -Yc

 = tgθ  (1) 



Ly - Yc
Xoff - Xc

 = tgθ                (2) 

Where 

tgθ =  
Lx1-Lx2

d         (3) 

Hereout follows for the co-ordinates of the origo: 

Xc =
( Xoff - Lx2)tg2θ

 1+tg2θ   +  
(Yoff -Ly)tgθ

1+tg2θ  + Lx2    (4) 

Yc = 
Yoff.tg2θ
1+tg2θ   +  

tgθ(Lx2 - Xoff)
1+tg2θ  + 

Ly
1+tg2θ     (5) 

The co-ordinates of an arbitrary point on the table can be expressed by using the 
following equation: 
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5 The Error Model 

In the above outlined measuring system we have to take into account the 
following error sources: 

• displacement measurement error as a result of wavelength variation 

• angle measurement error 

• perpendicularity error of the laserbeams and the reflecting mirrors 

• flatness error of the mirrors 

• reference surface flatness error resulting in role and pitch error on the 
table 

Let us consider these error components one by one: 

The displacement of the reflecting mirror is given by the following equation: 

Dx =   
c
2f (N + 

φ
2π)  (7) 

Where: 

• c is the speed of light 

• f is the laser frequency 



• N is the number 2πs and 

• Φ is the phase angle 

The laser frequency stability, after warmup is better than 3 x 10-7. The speed of 
light is influenced by the temperature, the humidity, the turbulence and the 
contamination of the air. The frequency of the laser can be stabilized and the 
effect of temperature and humidity can be compensated digitaly by measuring 
both air and object temperature and the humidity. 

The error equation for the angle is: 

Δtgθ ≤   
Δ(Lx2-Lx1)

d  + 
Δd
d  tgθ  (8) 

Hereout follows that the angular error is determined by the relative error of the 
beamdistance of the dualbeam interferometer. 

The deviation from the prependicularity of the reflecting mirrors and that of the 
directions of the interferometers contribute to the overall error of the system. Also 
the perpendicularity error of the reference system (Xref,Yref) has a similar effect. 

The angle between the mirrors is φ, whereas the angles between the reference axis 
and the axis of the interferometers are given by α and β respectively. 

From Fig. 4 it can be immediatly seen that: 

Δ = 90°- φ = θ - ψ    (9) 

Where Δ = 90º- φ is the perpendicularity error of the table (the reflecting mirrors) 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 
Perpendicularity error model 

Xc - Lx2cosα
Yoff - Lx2sinα - Yc

 = tg ψ    (10) 

Lycosβ - Yc
Xoff - Lysinβ - Xc

 = tg θ    (11) 

(Lx2 - Lx1) cosα
 d + (Lx2 - Lx1) sinα = tg ψ    (12) 

From hereout follows by substituting 

sinα  = α, cosα = 1, sin β = β, cos β = 1, 

and neglecting the higher order small terms we get: 

tg θmeas =  
Lx2-Lx1

d    and  tg θ =  
tg(90º-φ) + tgψ
1 -tg(90º-φ)tgψ  

θ = 90° - ( φ + ψ) = Δ - arctg 
(Lx2-Lx1)cosα

d+ (Lx2-Lx1)sinα = Δ - 
arctg tgθmeascosα

1+tgθmeassinα    (13) 

Xc = 
Lx2

1+αtgθmeas
 + 

tgθmeas (Δ+tgθmeas)(Xoff -Lx2)
 1+(3α+Δ)tgθmeas+tg2θmeas

 - 
(1+2αtgθmeas)tgθmeas Ly 

 1+(3α+Δ)tgθmeas+tg2θmeas
 +  

+ 
αtg3θmeas Xoff 

 1+(3α+Δ)tgθmeas+tg2θmeas
 - 

(1+(2α+Δ)tgθmeas-Δtgθmeas)tgθmeas Yoff 
 1+(3α+Δ)tgθmeas+tg2θmeas

  (14) 
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Yc = 
 (1+2αtgθmeas) Ly

( 1+(2α+Δ)tgθmeas+tg2θmeas) + 
(Δ+tgθmeas)(Lx2 - Xoff)

(1+(2α+Δ)tgθmeas+tg2θmeas) +  

+ 
αtg2θmeasXoff

( 1+(2α+Δ)tgθmeas+tg2θmeas) + 
tgθmeas (Δ+tgθmeas) Yoff

(1+(2α+Δ)tgθmeas+tg2θmeas)   (15) 

Using these results the co-ordinates of a point in the table co-ordinate system can 
be expresed using equation [6]. The geometric constant values Δ, α and β used in 
the computation can be measured by conventional optical techniques. 

If we consider the laserbeam as ray with nearly zero diameter then the flatness 
error of the mirrors results in an error of the displacement measurement. However 
the finite diameter of the beam has an integration property, so the local flatness 
error can be compensated to a certain extend. Waveness errors larger then the 
beam diameter have to be taken into account. A map of the mirror surface is the 
necessary and sufficient information  for the compensation of this type of errors. 

The map can be captured by interferometric techniques. The applied technologies 
in manufacturing optical surfaces ensure that the functions describing the surface 
is continoues into the second derivatives. Therefore a spline model of the surface 
is space and time saving. 
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Figure 5 
Model of the straightness (flatness) error 

 



6 The Software Implementation 

The interferometer delivers through USB ports two current co-ordinate and a 
current angle value. These signals are connected to a personal computer 
responsible for the calculations. As high presion measurements are connected with 
relavtively slow displacements the computational time is not a critical factor and 
as we have seen the amount of data involved is also small. The compensation for 
the speed of light deviation is performed by the electronic unit of the 
interferometer. There is no need for any additional hardware. The program 
performing the above mentioned calculations is written in C++ and runs on the 
Window XP operating system. Based on an analysis of the formulas at some point 
multilenght arithmetic is used in order to ensure the required accuracy. The 
measurement result wil be published in separate paper. 

Conclusions 

The research a part of which presented here proved the usefulness of software 
error compensation in co-ordinate measurement. According to our expectation 
combined with new construction the accuracy can be improved with an order of 
magnitude. The initial results are promising and the technique can extended into 
the third dimension. 
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