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Abstract: It is given a short overview on models for image restoration where an image

is embedded in an evolution process. The original image is transformed through a

process that can be represented in form of second-order partial differential equation.

It is considered a general form of PDE-based methods for restoration. Models which

are generalizations of the heat equation are given.
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1 Introduction

We give a short overview how PDEs methods can be applied in the restoration
of one image ([1, 3, 5, 9]). The idea is to superimpose a regular grid on an
analogue image and to assign a digital number to each square of the grid. Each
square is called a pixel. Value of pixel is the gray-level or brightness. To
describe a pixel may need several channels. Three channels are necessary for
a color image. We will consider only gray-scale images with one channel. A
restored image can be seen as a version of the initial image at a special scale. An
image u is embedded in an evolution process, denote by u (t, ·). At time t = 0,
u (0, ·) = u0 (·) is the original image. The original image is then transformed a
process than can be written ∂u

∂t (t, x) + F
(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0

in Ω. Some possibilities for F to restore an image are considered in [1]. In
Section 2 it is presented a general form of PDE for image restoration and there
is given a connection with Gaussian linear filtering. The basic PDE in image
restoration is the heat equation. Because of its oversmoothing property (edges
get smeared), it is necessary to introduce some nonlinearity. We then consider
the model ([1, 9])

∂u

∂t
= div

(
c
(
|∇u|2

)
∇u

)
, (1)



where we choose the function c that equation remains parabolic. We would
like to have c(s) ≈ 1/

√
s as s → ∞, because we want to preserve the discon-

tinuities, see [1]. Because of this behavior, it is not possible to apply general
results for parabolic equations theory. The framework for study this equation
is the nonlinear semigroup theory ([1, 2, 4]). In Section 3 it is introduced
some regularization. Catte et al. [3] proposed to solve the following partial
differential equation instead (1):

∂u

∂t
(t, x) = div

(
c
(
|(∇Gσ ∗ u) (t, x)|2

)
∇u (t, x)

)
.

2 General form of PDE-Based Method

Some divergence operators can be decomposed using the tangent and normal
directions to the isophote lines (lines along which the intensity is constant), see
[1]. For each point x where |∇u| 6= 0 we can define the vectors N = ∇u

|∇u| and T

with T ·N = 0, |T | = 1. For the first and second partial derivatives of u we use
the usual notation ux1 , ux2 , ux1x1,... We denote by uNN and uTT the second
derivatives of u in the T -direction and N -direction, respectively:

uTT = T t ∇2u T =
1

|∇u|2
(
u2

xuyy + u2
yuxx − 2uxuyuxy

)
,

uNN = N t ∇2u N =
1

|∇u|2 (u2
xuxx + u2

yuyy + 2uxuyuxy).

∇u and ∇2u are respectively the gradient and the Hessian matrix of u with
respect to the space variable x.

PDE-methods for restoration can be formally written in the following general
form:




∂u
∂t (t, x) + F

(
x, u(t, x),∇u (t, x) ,∇2u (t, x)

)
= 0 in (0, T )× Ω,

∂u
∂N (t, x) = 0 on (0, T )× ∂Ω (Neumann boundary condition),
u (0, x) = u0 (x) (initial condition),

(2)

where u (t, x) is the restored version of the initial degraded image u0 (x). The
idea is to construct a family of functions (i.e. images) {u (t, x)}t>0 representing
successive version of u0 (x). As t increases u (t, x) changes into a more and more
simplified image. We would like to attain two goals. The first is that u (t, x)
should represent a smooth version of u0 (x) where the noise has been removed.
The second is to be able to preserve some features such as edges, corners, and
T-junctions, which may be viewed as singularitis.

The basic PDE in image restoration is the heat equation:
{

∂u
∂t (t, x)−∆u (t, x) = 0, t ≥ 0, x ∈ R2,
u (0, x) = u0 (x) .

(3)



We consider that u0 (x) is primarily defined on the square [0, 1]2. We extend
it by symmetry to C = [−1, 1]2 and then in all of R2 by periodicity. This way
of extending u0 (x) is classical in image processing. If u0 (x) extended in this
way satisfies in addition

∫
C
|u0 (x)| dx < +∞, we will say that u0 ∈ L1

# (C)
(see [1]).
Solving (3) is equivalent to carrying out a Gaussian linear filtering, which was
widely used in signal processing. If u0 ∈ L1

# (C), then the explicit solution of
(3) is given by

u(t, x) =
∫

R2
G√2t (x− y)u0 (y) dy =

(
G√2t ∗ u0

)
(x) , (4)

where Gσ (x) denotes the two-dimensional Gaussian kernel

Gσ (x) =
1

2πσ
e−

|x|2
2σ2 (5)

In [1] the authors introduce directions N = ∇u
|∇u| i T with T ·N = 0, |T | = 1 and

then is ∆u = uNN + uTT . The isotropy means that the diffusion is equivalent
in two directions.

Proposition 1 Let u0 be in L1
# (C) and define u (t, x) by (4). Than for all

t > 0 and x ∈ R2, u(t, x) satisfies the heat equation with initial value u0 :

∂u

∂t
(t, x) = ∆u (t, x) and lim

t→0

∫

C

|u (t, x)− u0 (x)| dx = 0

u(t, ·) ∈ L1
# (C) and u ∈ C∞

(
(0, T )× R2

)
for all T > 0.

Moreover, if t1 is any positive real number, there exists a constant c(t1) such
that for t ∈ [t1, +∞),

sup
x∈R2

|u (t, x)| ≤ c(t1) |u0|L1
#(C) . (6)

If u0 ∈ L∞# (C), than we have a maximum principle

inf
x∈R2

u0 (x) ≤ u (t, x) ≤ supu0 (x) .
x∈R2

(7)

Here u (t, x) given by (4), is the unique solution of the heat equation satisfying
conditions (6) and (7).
The heat equation has been (and is) successfully applied in image processing
but it has some drawback. It is too smoothing and because of that edges can
be lost or severely blurred.

We will consider models that are generalizations of the heat equation. The
domain image will be a bounded open set Ω of R2. The following equation is



initially proposed by Perona and Malik [9]:




∂u
∂t = div

(
c
(
|∇u|2

)
∇u

)
in Ω× (0, T ) ,

∂u
∂N = 0 on ∂Ω× (0, T ) ,
u (0, x) = u0 (x) in Ω

(8)

where c : [0,∞) → (0,∞) . If we choose c ≡ 1, then it is reduced on the heat
equation. If we assume that c (s) is a decreasing function satisfying c (0) = 1
and lim

s→∞
c (s) = 0, then:

i) Inside the regions where the magnitude of the gradient of u is weak,
equation (8) acts like the heat equation, resulting in isotropic smoothing.

ii) Near the region’s boundaries where the magnitude of the gradient is
large, the regularization is ”stopped” and the edges are preserved.

We choose c so that equation remains parabolic. We would like to have
c(s) ≈ 1/

√
s as s → ∞, because we want to preserve the discontinuities (see

[1]). Because of this behavior, it is not possible to apply general results from
parabolic equations theory.

The assumptions imposed on c (s) are




c : [0,∞) → (0,∞) decreasing,
c(0) = 1, c(s) ≈ 1√

s
as s →∞,

b(s) = c(s) + 2c′(s) > 0.

(9)

Framework to study this equation is nonlinear semigroup theory (see [1, 2, 4]).
In [1] is given theorem which establish the existence and uniqueness of a solu-
tion.

Example of c(s) satisfying (9) is c(s) = 1√
1+s

.

Now we represent the Perona and Malik model [9]. We consider equations
that can behave locally as inverse heat equations. Perona and Malik in [9]
consider follow choices for function c in equation (1):

c(s) =
1

1 + s/k
or c(s) = e−s/k (10)

where k is constant. The divergence term in (1) can be written as

div
(
c
(
|∇u (t, x)|2

)
∇u (t, x)

)
= c

(
|∇u (t, x)|2

)
uTT + b

(
|∇u (t, x)|2

)
uNN ,

where we denote by T and N the tangent and normal directions to the isophotes
and function b depends on c. With choices of c like (10), the function b may
become negative. Solution should consist of regions with ”low” gradients sep-
arated by points of discontinuity where the gradient is infinitive (see [5]). The



notion of solution must be understood in a measure sense, and it is still an
open problem. Another possibility is to introduce some regularization. Catte
et al. [3] proposed to solve the following partial differential equation instead
(1):

∂u

∂t
(t, x) = div

(
c
(
|(∇Gσ ∗ u) (t, x)|2

)
∇u (t, x)

)
.

This equation is well posed, in Theorem 2 is proved the existence and unique-
ness of a solutions in the distributional sense.
The following equation is the general 2-D Perona and Malik [9].

{
∂u
∂t (t, x) = div

(
c
(
|∇u (t, x)|2

)
∇u (t, x)

)
,

u (0, x) = u0 (x) ,
(11)

where c : [0,∞) → (0,∞) is a smooth decreasing function. Equation (11) can
be rewritten as

{
∂u
∂t (t, x) = c

(
|∇u (t, x)|2

)
uTT + b

(
|∇u (t, x)|2

)
uNN ,

u (0, x) = u0 (x) .

Following intuition from the 1-D case and to sharpen edges, authors of [1]
impose that (11) is backward in the normal direction N , i.e.,

b(s) = c(s) + 2sc′(s) < 0 for large s ≥ K (12)

where K is a given threshold. If we want to smooth homogeneous regions, we
can assume

c (0) = b (0) = 1,

which implies that (11) acts like the heat equation for small gradients.
Hardly anything can be said about the existence of solution for (11) with b
satisfying (12). Kichenassamy [5] proved the following theorem:

Theorem 1 Let us suppose that:
i) There exists a constant K > 0 such that b(s) > 0 for s < K2 and

b(s) < 0 for s > K2

ii) Both c(s) and b(s) tend to zero as s →∞.
iii) (11) has a solution u (t, x) satisfying K1 ≤ ux (t, x) ≤ K2 for all

x ∈ [A,B] and all t ∈ [0, T ] , for some A, B i K1 > K.

Then u (t, x) is infinitely differentiable at t = 0 and for all x ∈ (A,B).
Therefore, if the initial image is not infinitely differentiable, there is no weak
solution.

It follows from [5] that ”solution” must consist of regions in which it has a
gradient less than K in absolute value separated by points of discontinuity
where the gradient is infinite. Thus, the notion of solution must be understood
in the measure sense. A typical example for c(s) is c(s) = 1

1+s/K .



3 Regularization of Perona and Malik model

In this section will introduce a regularization that makes the problem well
posed. This method was followed by Catte et al. [3]. The idea is to substitute
in diffusion coefficient c

(
|∇u|2

)
the gradient of the image ∇u by a smooth

version of it Gσ ∗∇u is a smoothing kernel, for example, the Gaussian one (5).
Since Gσ ∗ ∇u = ∇ (Gσ ∗ u) = ∇Gσ ∗ u, model is

{
∂u
∂t (t, x) = div

(
c
(
|(∇Gσ ∗ u) (t, x)|2

)
∇u (t, x)

)
,

u (0, x) = u0 (x) .
(13)

Next theorem from [3] establish that (13) is well posed. Let us note Ω =
(0, 1)× (0, 1) and g (s) = c

(
s2

)
.

Theorem 2 Let g : [0,∞) → (0,∞) be smooth, decreasing with g (0) = 1,
lim

s→+∞
g (s) = 0 and s → g (

√
s) smooth. If u0 ∈ L2 (Ω), then there exists a

unique function u (t, x) ∈ C
(
[0, T ] ; L2 (Ω)

) ∩L2
(
(0, T ) ; W 1,2 (Ω)

)
satisfying

in the distributional sense




∂u
∂t (t, x)− div

(
c
(
|(∇Gσ ∗ u) (t, x)|2

)
∇u (t, x)

)
= 0 on (0, T )× Ω,

∂u
∂N (t, x) = 0 on (0, T )× ∂Ω,
u (0, x) = u0 (x) .

(14)

Moreover, |u|L∞((0,T );L2(Ω)) ≤ |u0|L2(Ω) and u ∈ C∞
(
(0, T )× Ω

)
.

Remark Let u0 ∈ L2 (Ω). We construct a sequence un by solving the iter-
ative scheme




∂un

∂t (t, x)− div
(
g

(
|(∇Gσ ∗ un) (t, x)|2

)
∇un+1 (t, x)

)
= 0 a.e. on (0, T )× Ω,

∂un+1

∂N (t, x) = 0 a.e. on (0, T )× ∂Ω,
un+1 (0, x) = u0 (x) .

It is proven in [3] that un converges in C
(
[0, T ] ; L2 (Ω)

)
to the unique solution

of (14).

4 Conclusion

In this paper we give a short overview how PDEs methods can be applied in
the restoration of one image. Further research should concern pseudo-analysis
([6, 7, 8]) and its applications on this problem.
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