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Abstract: J-K flip-flops are the most general elementary units in sequential digital circuits. 
By extending Boolean operations to their respective fuzzy counterparts various fuzzy flip-
flops (F3) can be defined. Because of the axiomatic properties of fuzzy operations are 
considerably weaker then the properties satisfied by Boolean lattices, the minterm and 
maxterm type definitions of the same F3 are as a rule not equivalent. In former work we 
found a unique exception where simulation investigations lead to identical results for all 
parameter combinations examined. The base of this unique F3 is a pair of non-associative 
fuzzy connectives. In this paper the exact proof is given for the identity of the two 
definitions, i.e., for the uniqueness of the definition of this special non-associative F3. 
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1 Introduction 

In this paper, we present the preliminary results of analyzing elementary fuzzy 
‘digital’ sequential circuits, i.e. fuzzy flip-flops (F3) based on non-associative 
fuzzy operations. 

In particular, we prove the surprising result, that comparing the equations of the 
next state of the so called set and reset type [5] version of the modified Fodor 
fuzzy flip-flop (F4) [2,9], i.e. there is only one F4 and the two formulas are 
equivalent. This equivalence does not hold for any other F3 defined as far in the 
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literature, this is why the symmetrical combined set-reset type F3 was introduced 
in [6] etc., in order to maintain the original symmetrical property of the Boolean 
operations based binary J-K flip-flop. 

Before introducing this new F3, an overview of classic and non-associative fuzzy 
operations (t-norms and co-norms), further of Boolean flip-flops will be given. 

2 Classic Fuzzy Operations 

2.1 Fuzzy Intersections (Conjunctions): t-Norms and Fuzzy 
Unions (Disjunctions): t-Conorms 

The intersection (conjunction) of two fuzzy sets A and B is specified in general by 
a binary operation on the unit interval; i.e., a function of the form 

[ ] [ ] [ ]: 0,1 0,1 0,1i × → . (1) 

For each element x of the universal set X, this function takes the pair consisting of 
the element’s membership grades in set A and in set B as its argument, and yields 
the membership grade of the element in the set constituting the intersection of A 
and B. Thus, 

( )( ) ( ) ( )[ ]xB,xAixBA =∧  (2) 

for all .Xx∈  

The fuzzy intersection (t-norm) i is a binary operation on the unit interval that 
satisfies the axiomatic skeleton containing certain boundary conditions, 
commutativity, monotonicity, and associativity. (See [7, 8].) 

Similarly to fuzzy intersection, the general fuzzy union of two fuzzy sets A and B 
is specified by the function 

[ ] [ ] [ ]: 0,1 0,1 0,1u × → . (3) 

The argument of this function is the pair consisting of the membership grade of 
some element x in fuzzy set A and the membership grade of that same element in 
fuzzy set B. The function returns the membership grade of the element in the set 

.BA∨ Thus, 

( )( ) ( ) ( )[ ]xB,xAuxBA =∨  (4) 

for all .Xx∈  
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A fuzzy union (t-conorm, disjunction) u is a binary operation on the unit interval 
that satisfies its respective boundary conditions, commutativity, monotonicity, and 
associativity. (Cf. [7, 8].) 

While these two operations have a completely dual axiomatic skeleton, they can 
be defined completely independently from each other. 

2.2 Fuzzy Complements (Negations) 

The complement (negation) of a fuzzy set A is specified by a unary operation on 
the unit interval: 

[ ] [ ]: 0,1 0,1c → . (5) 

For each element x this function yields the membership grade of the same element 
in the complement of the original set, thus 

( )( ) ( )[ ]XAcxA =¬  (6) 

for all .Xx∈  

Complementation satisfies the boundary conditions and monotonicity, while 
strong complements (negations) are also involutive. 

In the practice very often the t-norm and co-norm are defined in a way where 
along with a suitable fuzzy complement, such as the very often used Zadeh 
complement 

( ) ( )( ) ( )1Z ZA x n A x A x¬ = = − , (7) 

they form a De Morgan-triplet, satisfying 

( )( ) ( ) ( )( )( )A B x A B x¬ ∧ = ¬ ∨ ¬      and (8) 

( )( ) ( ) ( )( )( )A B x A B x¬ ∨ = ¬ ∧ ¬ . 

Such triplets often satisfy further interesting axiomatic properties of Boolean 
operations, but never all of them at the same time. 

2.3 Non-Associative Operations 

The motivation for non-associative fuzzy operations can be found in analyzing the 
behavior of the connectives in subjective probability or certainty calculation 
contexts [1]. 
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Let us assume that we know the degrees of certainty (subjective probabilities)       
p (S1) and p (S2) in two statements S1 and S2, then possible values of ( )21 SSp ∧  
form an interval 

( ) ( )1 2 1 21 0p max p p , ,min p , p= + −⎡ ⎤⎣ ⎦ . (9) 

(These two boundaries represent well known extremes of possible intersections 
corresponding to the axiomatic skeleton according to Section 2.1.) 

As a numerical estimate, it is natural to use the midpoint of this interval: 

( ) ( )
1 1 2 1 2

1 1 0
22p p max p p , min p , p∧ = + − +⎡ ⎤⎣ ⎦ . (10) 

Similarly, for the union operation, we can take the midpoint of the corresponding 
interval: 

( ) ( )
1 1 2 1 2

1 1
22p p max p , p min p p ,∨ = + +⎡ ⎤⎣ ⎦ . (11) 

Selecting the midpoint in this way is not only natural from common sense 
viewpoint, but it also has a deeper explanation. The subjective probabilities of all 
four minterm combinations of the statements S1 and S2, these four probabilities 
should add up to 1. Assuming now that all probability distributions are equally 
possible, i.e., the ‘second order probability’ has uniform distribution; the midpoint 
will have maximum expectation. (For details see e.g. [4].) 

Despite the natural interpretation of such midpoint based operations, alas they 
have a rather disadvantageous (to some extent, counterintuitive) property: 

( ) ( )321321 pppppp ∧∧≠∧∧      and (12) 

( ) ( )1 2 3 1 2 3p p p p p p∨ ∨ ≠ ∨ ∨ , 

both operations are non-associative! 

There are many other possible motivations behind using non-associative norms, 
such as preference and ranking in multicriteria decision making (see [3]). Some 
very enlightening examples for real-life related decision situations, where one of 
the connectives has partial features of its dual pair (an intersection with partial 
union properties or vice versa) have been suggested even much earlier, as e.g. in 
[13]. 

Because of the interesting properties of the non-associative norms and their 
important connections with real life, in this paper we intend to investigate the 
behavior of an F3 defined by using such non-associative operations. The more so, 
as this aspect of F3 has been already touched upon [2]. 
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3 Binary (Boolean) and Fuzzy Flip-Flops 

All types of traditional binary flip-flop circuits, such as the most general J-K flip-
flop store a single bit of information. These elementary circuits are also the basic 
components of every synchronous sequential digital circuit. The next state 
( )1Q t + of a J-K flip-flop is characterized as a function of both the present 

state ( )Q t  and the two present inputs ( )tJ  and ( )tK . In the next, J, K and Q will 
be used instead of ( )tJ , ( )tK  and ( )tQ , respectively, as simplified notations.  The 
minterm expression (canonical disjunctive form) of ( )1Q t +  can be written as 

( 1)Q t J KQ J KQ J KQ JKQ+ = + + + , (13) 

this can be simplified to the minimal disjunctive form 

( 1)Q t J Q KQ+ = +  (14) 

This latter is well-known as the characteristic equation of J-K flip-flops. On the 
other hand, the equivalent maxterm expression (minimized conjunctive form) can 
be given by 

( 1) ( )( )Q t J Q K Q+ = + + . (15) 

These two expressions, (14) and (15), are equivalent in Boolean logic, however 
there are no such fuzzy operation triplets where these two forms are necessarily 
equivalent. It is a rather obvious question, which of the two should be considered 
as the fuzzy extension of the definitive equation of the fuzzy extension of the very 
fundamental concept of J-K flip-flop. There is no justifiable argumentation that 
prefers any of these two to the other. Thus, there is no unambiguous way to 
introduce the concept of fuzzy J-K flip-flop. This is why Hirota and Ozawa [5, 6] 
proposed two dual definitions of fuzzy flip-flops. They interpreted (14) as ‘reset 
type fuzzy flip-flop’: 

( 1) ( ) ( )RQ t J Q K Q+ = ∧¬ ∨ ¬ ∧ , (16) 

where the denotations for logic operations stand this time for Zadeh type fuzzy 
conjunction, disjunction and negation. In a similar way the definition of ‘set type 
fuzzy flip-flop’ was obtained by re-interpreting (15) with fuzzy operations: 

( 1) ( ) ( )SQ t J Q K Q+ = ∨ ∧ ¬ ∨¬ . (17) 

As a mater of course, it is possible to substitute the Zadeh operations by any other 
reasonable fuzzy operation triplet (e.g. De Morgan triplet), this way obtaining a 
multitude of various fuzzy flip-flop (F3) pairs, such as the algebraic F3 introduced 
in [10] and [11]. We examined a large number of operations applicable for 
constructing F3 in [9]. There are also ways to obtain single F3 definitions by 
merging the set and reset type versions in a manner so that the merger results in a 
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symmetrical F3 [10]. While such a merger has clear advantages in the sense that 
the F3 thus defined inherits the ’nice‘symmetric of the original binary flip-flop, it 
is a disadvantage that such merged F3s cannot be given by a single closed formula 
and can not be interpreted by any single unconditional fuzzy logic formula. 

As it has been pointed out, a multitude of popular fuzzy operation triplets have 
been investigated as the possible base for defining F3 and, as expected, none of 
them produced an equivalence of (16) and (17), not even by coincidence. 
Introducing however a pair of non-associative fuzzy connectives for the same 
purpose lead to the surprising simulation results pointing at an unexpected 
equivalence of the corresponding set and reset type F3s. Motivated by the hope to 
be able to find a single symmetrical definition for an F3 we focus this paper to the 
mathematical analytic examination of this particular non-associative operations 
based F3, which will follow in section 4. 

4 Non-Associative Fuzzy Flip-Flops 

In [2] Fodor and Kóczy proposed a pair of non-associative operations for a new 
class of fuzzy flip-flops. It was stated there that any F3 satisfying: 

P1: F (0, 0, Q) = Q, 

P2: F (0, 1, Q) = 0, 

P3: F (1, 0, Q) = 1, 

P4: F (1, 1, Q) = n (Q), 

P5: F (e, e, Q) =e, 

P6: F (D, n (D), Q) = D. 

Where e = n (e) is the equilibrium belonging to n, where n is a strong negation, 
( )0,1D∈ . P2, P3 and P6 can be merged into the single property P6’: 

F (D, n (D), Q) =D,  [ ]0,1D∈ . 

Let the φ -transform be an automorphism of the unit interval such that 

( ) [ ]11 ( )(1 ( )) ( )(1 ( ))RQ t J Q Q Kφ φ φ φ φ−+ = − + − . (18) 

Similarly, for theψ -transform 

( ) ( )( )11 ( )(1 ( )) ( ) 1SQ t J Q Q Kψ ψ ψ ψ ψ− ⎡ ⎤+ = − + −⎣ ⎦ . (19) 

The following equation satisfies all Pi-s (i= 1, 6) 
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( ) ( ) ( )1 1 1 1RQ t min T J , Q T K ,Q ,+ = − + − =⎡ ⎤⎣ ⎦  

               ( ,1 ) (1 , )T J Q T K Q= − + − . (20) 

The formula for the set type F4 in [2] is however not the proper dual pair of (20), 
moreover, it is problematic in the sense of closedness for the unit interval. Thus in 
[9] we proposed a corrected definition for the set type formula as follows: 

( ) ( ) ( )1 1 1 1 0SQ t max S J ,Q S K , Q ,+ = + − − − =⎡ ⎤⎣ ⎦  

               ( , ) (1 ,1 ) 1S J Q S K Q= + − − − . (21) 

In (20) and (21) T and S denote the so called Łukasiewicz norms. From here: 

( ) ( )1 0
1

2R

min J , Q max J Q,
Q ( t )

− + −
+ = +  

                   
( ) ( )1 0

2
min Q, K max Q K ,− + −

, (22) 

( ) ( )1 1 1
1

2S

max( J ,Q ) max K , Q
Q t

+ − − −
+ = +  

   
( ) ( )1 2 1 1

2
min J Q, min Q K ,+ + − − −

.       (23) 

These equations were obtained by combining the standard (Zadeh) and the 
Łukasiewicz norms by the arithmetic mean in the inner part of the formula. The 
other parts use Łukasiewicz operations. Let us briefly denote the ‘Fodor-Kóczy 
type fuzzy flip-flop’ by F4. 

Comparing this corrected form of the set type F4 we come to the surprising result 
that there is only one F4 in this particular case as the two formulas are equivalent. 

This fact was strongly suggested by the simulation results obtained in [9], now we 
present the exact proof. 

4.1 Statement 

4 4F F
R SQ Q= , thus there is only one (symmetrical, corrected) F4. 

Proof 

We prove that 

( ) ( )1 1R SQ t Q t+ = +  (24) 
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for every possible combination of , , ( ).J K Q t  

Substituting (22) and (23) we obtain the following equivalent equation to prove: 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 0 1 0

1 1 1 2 1 2

min J , Q max J Q, min Q, K max Q K ,

max J ,Q max K , Q min J Q, min K Q, .

− + − + − + − =

+ − − + + + − − −
         (25) 

For the 6 values J, K, Q, J¬ , K¬ , Q¬ , the total number of all possible 
combinations is theoretically 3! x 23=48. These 48 cases are not all essentially 
different. Any variable and its negated are symmetrical to the equilibrium e=0.5. 
Consequently, for describing a case it is sufficient to tell which one of the ponated 
or negated version of each of the three variables is less or equal then e. The 8 main 
cases to be considered are as follows: 

Q,K,J)4
Q,K,J)3

Q,K,J)2
Q,K,J)1

¬
¬

¬¬¬
   

Q,K,J)8
Q,K,J)7
Q,K,J)6

Q,K,J)5

¬¬
¬¬

¬¬
¬

 

Each of these 8 cases has 3! =6 sub-cases depending on the sequence of these 
three. In the next table these 48 sub-cases will be discussed so that some sub-cases 
can be merged in the sense that RQ  and SQ  are identical. The total number of 
essentially different sub-cases is 13. The first column of the table contains the 
serial number of the essentially different sub-case; the second column describes 
the inequality conditions applying for the given essential sub-case, while the third 
column gives the identical value of 2 RQ  and 2 SQ  in the given sub-case. The 
deduction of these results is omitted here for the sake of saving space. 

Case# ConditionS ( ) ( )2 1 2 1R SQ t Q t+ = +  

1 Q,QK,J ¬≤  2J K Q− +  

2 
Q,QJ,K
Q,QK,J

¬≤¬
¬≤¬

 
1 J K+ −  

3 Q,QK,J ¬≤¬¬  2 2J K Q+ − −  

4 K,KQ,J ¬≤  QJ +  

5 K,KQ,J ¬≤¬  1 2J K Q+ − +  

6 K,KQ,J ¬≤¬  1 J Q+ −  

7 K,KQ,J ¬≤¬¬  2 2J K Q+ − −  

8 J,JQ,K ¬≤  2J K Q− +  

9 J,JQ,K ¬≤¬  1 K Q− +  
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10 J,JQ,K ¬≤¬  1 2J K Q+ − −  

11 J,JQ,K ¬≤¬¬  2 K Q− −  

12 K,J,K,JQ ¬¬≤  2J  

13 K,J,K,JQ ¬¬≤¬  2 2K−  

Table 1 
Essentially different sub-case for the F4 

In all cases the third column contains a single expression, so 
4F

RQ  is always 

identical with
4F

SQ . Q.e.d. 

We have shown that the modified F4 proposed in [9] is indeed a single F3 with 
nice dual and symmetrical behavior. Figure 1 presents some diagrams illustrating 
the behavior of F4 for some typical J, K and Q. 

Conclusions 

As far no other F3 could be found with the advantageous property discovered for 
F4. On the other hand the non-associative behavior of the operation used in the 
definitions is somewhat inconvenient. 

In the future we intend to investigate the behavior of complex fuzzy sequential 
circuits based on F4 and matching logical connectives. Further we intend to 
investigate the behavior of other F3s based on various ‘famous’ non-associative 
operations well known from the literature (e.g. in [1]). It would be very interesting 
to find other F3s with similar advantageous properties. 
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Figure 1 
The behavior of F4 for some typical parameter values 
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