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Abstract: The problem of finding the digital convex fuzzy hull of a digital fuzzy set,

whose support is made of some digital points (centroids) in Z
2, is considered here.

A region is DL−convex if, for any two pixels belonging to it, there exists a digital

straight line between them, all of whose pixels belong to the region. An algorithm

how to compute the DL−convex hull of a digital region is described. Also we describe

algorithm for computing digital convex fuzzy hull of digital fuzzy set, which support

is in Z
2, and is DL-convex. The proof that digital convex fuzzy hull is obtained by

this algorithm, is also given.
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1 Introduction

In this article we use the notions and the properties related to them which are
given in the paper [3]. Our main problem is how to find convex hull of a given
digital set. In order to do so we could compute Euclidean convex hull, but
it is not necessary for that set to be digital. So it should be the re-digitized.
We can iterative fill concavities by looking at local neighborhoods of border
pixels, but we cannot be sure that that set is convex (so it is an approximative
method), and these methods do not work if there are several components
in a region. Moreover, iterative filling is computationally expensive. Some
authors considered this problem by discussing T−convex hull and L−convex
hull using T−convexity and L−convexity, but the resulting hull may not
be digitally connected in certain situations, and a disconnected hull is not
attractive. So we define a new kind of digital convexity which is stronger
than T−convexity and L−convexity called DL−(digital line) convexity. The
DL−convex hull of any digital region is always digitally connected.



2 On the computation of convex hulls of digital

sets

We can say that, no proper DL−convex subset of HDL(R′) can contain R′.
Let us consider, how to compute DL−convex hull of a given digital region, for
which the equivalence of T−convexity and DL−convexity of an 8−connected
figure gives an attractive solution in most cases.

We can compute the T−hull (HT (R′)) of R′. By Theorem 3 (see [3,
1]), if HT (R′) is 8−connected, it must be HDL(R′). HT (R′) is computed
by constructing the Euclidean convex hull H(R′) and then finding all the
cellular points contained in H(R′). The founded DL−hull is unique because
Euclidean hull is unique.
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Let us consider the relation between connected components in HT (R′):
1) If R′ is connected so is its T−hull. If R′ is not connected its T−hull may
still be connected.
2) Let P be a vertex of the Euclidean convex hull polygon of R′. If the
angle made by two edges meeting at P is divided internally by a horizontal,
vertical, or diagonal line (orientation ±45o or ±135o) through P , no isolated
component can exist at P . In all other situations, isolated components will
exist in HT (R′). This is so because the cellular points in digital space lie on
horizontal, vertical or diagonal lines through P .
3) If each connected component of R′ has a thickness of 2 at every point,
HT (R′) must be connected (if a component can contain a square of size at
most t × t cells at a point, then its thickness at that point is t).

Our problem becomes more complex if HT (R′) is not connected. To start
with, we can connect the components of HT (R′) by digital straight lines.

We can distinguish two situations in which HT (R′) is not connected:



Euclidean hull H(R′) is a straight line segment (a degenerate case). In
this case we can just join components by a digital straight line segment.

Figure 2

Euclidean hull has no non-zero area (a non-degenerate case), but HT (R′)
is not 8−connected. In this case we ”fill” H(R′) with pixels to get HT (R′),
using the smallest number of pixels we can.

If a vertex of H(R′) is isolated in HT (R′) and HT (R′) has k connected
components between the edges emanating from this vertex, (k − 1) digital
straight lines can be drawn to connect these components. Let the result of this
operation be the connected region R′′. Unfortunately R′′ is not necessarily
T−convex and hence not DL−convex. If R′ is T−convex, then it is also
DL−convex, and is DL−hull of R′. This is so because the deletion of a single
point from R′′ makes it either disconnected or not T−convex and thus the
minimality condition is satisfied.

If R′′ is not T−convex, we can construct its T−hull, say R′′′. Although
R′′′ is DL−convex, it is not necessarily the minimal DL−convex set that
contains R′. We can check the condition of minimality by drawing all the
possible digital lines, and computing T−hull for each case to see when the
T−hull is minimal. To limit the computational cost, we can stop at R′′′

and call it approximate digital hull of R′. For a given digital line generation
method, and for a fixed method of deciding which points of R′ should be
joined by digital lines, we get a unique R′′′.

It should be mentioned that the true DL−hull of a disconnected region
may not be unique. For example, when R′ consists of two isolated points its
DL−hull is any of the many digital line segments that can be drawn between
the points. Uniqueness can be imposed only by using a particular line drawing
scheme.

For a digital line generation we use the following line digitization scheme:
Let f be the straight line segment between two points p and q. A digital

line Df is defined such that whenever f crosses a grid line, the nearest digital
point to the crossing (with a specific tie-breaking rule) is a point of Df , and
no other digital point is a point of Df . It can be shown that Df satisfies the
chord property if f is a straight line.

The above discussion suggests an algorithm to compute the DL−hull of
a region R′ using the following steps of

Algorithm 1 (for computing digital convex hull, see [1]):



step 1: Construct the Eu-
clidean convex hull H(R′) of R′.
Add the cellular points of R′ to
obtain the T−hull HT (R′).

step 2: Check 8−connectivity
of HT (R′). If it is connected, de-
fine HDL(R′) = HT (R′) and go
to step 4. Else, check whether
H(R′) is a line. If it is, generate
a digital straight line segment be-
tween the extreme cellular points
of H(R′) and call it HDL(R′).
Go to step 4. Else, continue.

Figure 3

step 3: Find the vertices of H(R′) where disconnection occurs. For each
such vertex, connect the points that lie between the edges emanating from
that vertex by digital straight lines. Let R′′ be the resulting connected figure.
Find the Euclidean convex hull of R′′. If it does not include any cellular points
other than those of R′, take HDL(R′) = R′′. Otherwise, find the T−hull of
R′′ and call it HDL(R′). Continue.

step 4: The DL−hull of R′ is HDL(R′). Return.

Sometimes it is useful to know whether a digital region is convex. In the
case of DL−convexity, the problem is simpler than finding the DL−hull:
For a given digital region R′ we first test whether it is 8−connected. If it
is not, then R′ is not DL−convex. Otherwise, we construct the Euclidean
convex hull of its cellular points and thus check whether it is T−convex. If
not, R′ is not DL−convex. Otherwise, R′ is DL−convex.

3 Digital fuzzy convex hull

Let us now propose a new algorithm for computing digital convex fuzzy hull.
Also, we shall prove that the set AFH obtained by this algorithm is a digital
convex fuzzy hull for a given digital fuzzy set A.

Let A = {(x1, y1), (x2, y2), ...(xn, yn)}, n ≥ 2 be support of digital fuzzy
set whose membership function is given by µ, which is DL−convex. Beside
points Ak(xk , yk) ∈ A we can observe the corresponding points Ãk(xk , yk, µ(Ak)).

Algorithm 2 (for computing digital convex fuzzy hull):

step 1: Order set A by non increasing order of membership function µ for



their points and we denote them with A1, A2, ..., An. So, µ(A1) ≥ µ(A2) ≥
... ≥ µ(An).

step 2: Observe points A1 and A2. Denote with p = p(A1, A2) the line
ordered with points A1 and A2.

Is it true µ(A1) = µ(A2)?

If it is, then go to step 3′.
If it is not, i.e. states µ(A1) > µ(A2), go to step 3′′.

step 3′: Observe all points of set p ∩ A whose membership function is
equal to µ(A1) = µ(A2). First we find end points of that set, designate them
by E′

1 and E′′
1 , and store them in set E (which we are going to call the set

of extreme points), while other points are stored in set AH (which we are
going to call the set of non extreme points of fuzzy digital convex hull). We
remove in AH all points Ap of set A from line segment E ′

1E
′′
1 (see Figure

4) for which states µ(Ap) < µ(E′
1), with improved membership function on

µ(Ap) = µ(E′
1) = µ(E′′

1 ). Go to step 5.

step 3′′: We move the point A1 from A and store it in E with unchanged
membership function. Take that E ′′

1 ≡ E′
1 ≡ A1 and µ(E′′

1 ) = µ(E′
1) =

µ(A1). Rename indexes of set A such that A1 be the point with the largest
membership function, next point be A2, etc.

step 4: Observe all points of set p∩A that have equal membership function
as point A1, also consider points E ′

1 and E′′
1 (E′

i−1 and E′′
i−1), versus one of

them if they are equal.
From all those points (if they exist) denote with E ′

2 and E′′
2 (E′

i and
E′′

i ) such points that any other Ak from our set either match with them,
or it is between them. We also take that the order E ′

2 � E′
1 � E′′

1 � E′′
2

(E′
i � E′

i−1 � E′′
i−1 � E′′

i ), where the relation � is one of relations: ≡
(congruence of points) or − (be between two points) holds.

Store the points E′
2 and E′′

2 (E′
i and E′′

i ) in set E , if they are not already in
set E , and if one of them is already extreme point we give it the membership
function of the other, i.e. µ(E ′

i) = µ(E′′
i ). For example E′′

3 ≡ E′′
2 ∈ E , we

take that µ(E′′
3 ) = µ(E′

3) (see Figure 4).
Store other points Ak from set p ∩A in set AH .
Remove all points Aq from set A from line segment E ′

2E
′′
2 (E′

iE
′′
i ) for which

states µ(Aq) < µ(E′
2) (µ(Aq) < µ(E′

i)) in AH , with improved membership
function on µ(Aq) = µ(E′

2) = µ(E′′
2 ) (µ(Aq) = µ(E′

i) = µ(E′′
i )).
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Figure 4

step 5: Rename indexes of set A such that A1 be the point with the largest
membership function, next point be A2, etc.

Is it true A1 ∈ p ? (1)

If it is: go back to step 4, where input is again A1, and output is E′
i and E′′

i .
This iterative cycle repeats until previous condition (1) allows it.
If not:

Two end points (E′

l i E′′

l in Figure 4) from p ∩ E denote with K1 i K2.
Introduce new set K0 = {K1, K2}.

step 6: Join the point A1 with points K1 and K2

from set K0 ⊂ E . Store in AH , all points of set A that
are in the derived triangle, with improved membership
function on µ(A1). Store in E the point A1 with its
membership function.

Take that K3 ≡ A1 and µ(K3) = µ(A1) and store
point K3 in K0. In that way we get set K1 = K0∪{K3}.
Mark the derived triangle with M(K1).
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step 7: In the next iteration (and those after if they are needed) we take
the first point (from the remaining points, if they exist) from set A. Because
of the renaming of indexes of the set A, that point is A1.

If A = ∅, then go to step 8.
Store in E the point A1 with unchanged membership function, and if on

the derived line segments or in the interior of the derived polygon in current
iteration there are left some of the extreme points with the same membership
function µ(A1), remove them from set E in set AH with unchanged member-
ship function.

From points of set K2 = {K1, K2, K3} (Kr−1 = {K1, K2, K3, ..., Ki−1, Ki,

Ki+1, ..., Kj−1, Kj , Kj+1, ..., Km}) and point A1 we make another set K4

(Kr) in which contains those points which make convex hull of set K3 ∪ {A1}



(Kr−1 ∪ {A1}). In Figure 6 a) is K4 = {K1, K2, K3, A1}, in Figure 6 b) i 6.
c) is K4 = {K1, K2, A1}. In derived set K4 (Kr) we also rename indexes and
denote point A1 with K4 in the case like in Figure 6 a), or with K3 in the
cases as in Figures 6 b) and 6 c) (with Ki for some index i in general case).
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Denote with M(K4) (M(Kr)) polygon determined with points from K4

(Kr). Store in AH all points Ak from A∩ (M(K4) \M(K3)) (A∩ (M(Kr) \
M(Kr−1))), with improved membership function from µ(Ak) on µ(A1) if
that value is less than µ(A1) (because it is possible that µ(Ak) < µ(A1) or
µ(Ak) = µ(A1)).

If point A1 is colinear with some two neighbor points from K3 (Kr−1),
like in Figure 6 c) and the middle point of that three points (in Figure 6 c) is
K3) has membership function equal with µ(A1) we remove it from E in AH

the same as those points from K3 (Kr−1) which belong to interior of polygon
M(K4) (M(Kr)), and have the same membership function as µ(A1).
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step 8: AFH = E
⋃
AH. The end.



Theorem 1 Let A be point representa-

tion of digital set HDL(R), where R de-

notes arbitrary digital set, and HDL(R)
DL−convex hull derived by algorithm

1. Then fuzzy set AFH derived by al-

gorithm 2 is digital convex fuzzy hull of

set A, i.e. states:

HDLF = AFH.
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Proof. Let U and V be two arbitrary points of set AFH. Denote with M(Ki)
a convex polygon constructed over points of set Ki, with the smallest index i

that states U, V ∈ M(Ki). Polygon M(Ki) is derived from polygon M(Ki−1)
by adding point A1 such that convexity is not violated.

Two cases are possible:
1) U, V ∈ M(Ki) \M(Ki−1);
2) U ∈ M(Ki) and V ∈ M(Ki−1) (or inverse).

1) i) Let UV ∩M(Ki−1) = ∅, i.e. all points from
line segment UV are in M(Ki). If W ∈ Z

2 ∩ UV

digital point (centroid) which is in UV , then µ(U) =
µ(V ) = µ(W ) = µ(A1), thus inequality

µ(W ) ≥ min(µ(U), µ(V )) (2)

is trivially satisfied.
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ii) If UV ∩ M(Ki−1) 6= ∅, then digital point W

from line segment UV does not belong to M(Ki−1),
i.e. belongs to M(Ki) \ M(Ki−1). Analogously i)
inequality is satisfied.

In case that digital point W from line segment
UV belongs to M(Ki−1) it has membership function
µ(W ) ≥ µ(A1), so µ(W ) ≥ µ(A1) = µ(U) = µ(V ) =
min(µ(U), µ(V )) states.
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2) Let digital point W from line segment UV be-
longs to M(Ki) \ M(Ki−1), then µ(W ) = µ(A1) =
µ(U) ≤ µ(V ) (because by construction for every
point V ∈ M(Ki−1)) states µ(V ) ≥ µ(U), where
U ∈ Z

2 \M(Ki−1)), i.e.

µ(W ) = µ(U) = min(µ(U), µ(V )).

In case that W ∈ M(Ki−1) we have µ(W ) ≥ µ(A1)
= µ(U) = min(µ(U), µ(V )).

1
A

K
i

M( )

U

V

W
K

i - 1
M( )

Figure 9 c)

It can happen that both points U , V belong to degenerate polygon M(K0),
i.e. line segment K1K2. That means there exist p, q such that U ∈ E ′

pE
′′
p ,

V ∈ E′
qE

′′
q . Without loss of generality, let p ≤ q. Then, by construction

µ(U) ≥ µ(V ), since it is W ∈ UV there exists r, p ≤ r ≤ q such that
W ∈ E′

rE
′′
r ⊂ E′

qE
′′
q which means that µ(U) ≥ µ(W ) ≥ µ(V ), i.e. the

inequality (2) is valid. 2
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