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Abstract: Servo valve controlled hydraulic differential cylinders are non-linear, strongly 
coupled multivariable electromechanical systems. When the piston’s velocity with respect 
to the cylinder is in the vicinity of zero the effect of adhesion is a significant effect due to 
which decreasing absolute value of velocity results in increasing stiction force. 
Furthermore, when the motion is initiated from equilibrium state of zero initial velocity 
adhesion can compensate arbitrary forces within certain limits keeping the piston almost 
fixed. This regime of friction can be modeled by some elastic deformation the deformable 
elements of which become disconnected over certain force limits. In the paper a concise 
application of the dynamic LuGre Model of friction is reported in which the effects of the 
elastic deformation, adhesion, and viscosity are combined with each other. To compensate 
the effect of the imprecisely known system parameters and unknown external forces an 
adaptive control is developed in which varying fractional order derivatives are used to 
reduce the hectic behavior of friction in the case of ‘critical’ trajectories that 
asymptotically converge to a fixed position and zero velocity. Simulation results made by 
INRIA’s Scilab are presented. It is concluded that the combined application of the two 
adaptive techniques can result in accurate control if the LuGre model satisfactorily 
describes the reality. 

Keywords: Adaptive Control; Nonlinear Control; Dynamic Friction; LuGre Friction Model 



J. K. Tar et al. • Adaptive Control of a Differential Hydraulic Cylinder with Dynamic Friction Model 

 
362 

1 Introduction 

Hydraulic servo valve controlled differential cylinders are strongly coupled non-
linear electromechanical devices of multiple parameters which are difficult to be 
kept under perfect control. The viscosity of the oil in the pipe system is very sensi-
tive to the temperature that normally increases due to the friction in the 
circulation. Oil compressibility depends on the amount of air or other gases solved 
in it. Adhesion of the piston at the cylinder introduces rough nonlinearity into the 
behavior of the system. The combination of these effects with the not always 
measurable external disturbance forces can make a quite complex control task 
arise. Hydraulic cylinders also have a very important property: due to the 
compressibility of the working fluid and elastic deformation of the pipe system the 
pressures in its chambers cannot abruptly be changed. It is the time-derivative of 
the oil pressure related to the 3rd time-derivative of the piston’s displacement can 
abruptly be prescribed. The hectic behavior of friction forces also are related to 
this 3rd derivative, that is the control has to be developed for ab ovo noisy signals. 

The problem of driving a flexible robot arm under external disturbances by a 
hydraulic servo valve controlled differential cylinder was studied and solved in 
two alternative manners by Bröcker and Lemmen in [1]. Their first approach was 
based on the ‘disturbance rejection principle’, the other one on the ‘partial flatness 
principle’, respectively. In each case it was necessary to measure the disturbance 
force and its time-derivative as well as to know the exact model of the hydraulic 
cylinder they developed in details and identified for a particular robot arm-drive 
system. For describing friction they used the static Striebeck model. However, the 
identification of such a system needs a lot of laboratory work the result of which 
may also be temporal. A serious problem is the need for measuring the external 
disturbance forces, too. In general it seems to be expedient to apply adaptive 
control instead of trying to measure the ample set of unknown and time-varying 
parameters. This adaptive control need not to be too intricate, actually should not 
be much more complicated than an industrial PID controller. For this purpose Soft 
Computing (SC) based approaches would be more attracting than detailed 
analytical modeling. 

Unfortunately traditional SC (both fuzzy systems, and neural networks) suffer 
from bad scalability properties: the number of either the network nodes or the 
fuzzy rules is drastically increasing function of the degree of freedom of the 
system to be controlled. In order to get rid of the scalability problems of the 
classical Soft Computing a novel approach was initiated that is based on a 
compromise between the need of generality and scalability in [2]. It was shown by 
the use of perturbation calculus that this method can be applied for a quite wide 
class of physical systems, e.g. in the case of Classical Mechanical Systems, too 
[3]. This approach uses far simpler and far more lucid uniform structures and 
procedures than the classical ones: various algebraic blocks originating from 
different Lie groups can be incorporated into the ‘model’. In order to reduce noise-
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sensitivity the approach described in this paper allows a PIDvar control for the 
piston’s desired trajectory in which the order of derivation depends on the past 
fluctuation of the piston’s velocity that generates harsh modification in the friction 
forces. In the sequel the main point of the scalable soft computing is very briefly 
outlined. Following that the analytical model of the differential hydraulic servo 
cylinder based on the dynamic LuGre friction model is presented together with the 
new control approach applied. The paper is closed by the simulation results and 
the conclusions. 

2 The Adaptive Control 

The adaptive control used in this case is based on the concept of Complete 
Stability that often is used as a practical criterion for the controlled system. It 
means that for a constant input excitation the system’s output asymptotically 
converges to a constant response. If the variation of the input is far slower than the 
system's dynamics, with a good accuracy, it provides us with a continuous 
response corresponding to some mapping of the time-varying input [4]. Therefore, 
let us suppose that there is given some imperfect model of the system on the basis 
of which some excitation e is calculated to obtain a desired system response id as 
e=ϕ(id). The system has its inverse dynamics described by the unknown function 
f() as ir=ψ(ϕ(id))=f(id) resulting in a realized response ir instead of the desired one. 
Normally one can obtain information on f() only by observing its appropriate input 
and output values. In general this function can considerably vary in time. The 
control deforms the input of f() [id*] to achieve and maintain the id=f(id*) state by 
applying a series of linear transformations defined as 

( ) ( ) nnnn iSiiifSiSiiifSi 00000 111n111  ; ; ... ; ; ; ++− ==== . (1) 

If this series converges to the identity operator (Sn→I) just the proper deformation 
is approached, therefore the controller ‘learns’ the behavior of the observed 
system via step-by-step amendments of the initial model. For making the problem 
mathematically unambiguous the ambiguous conditions in (1) can be transformed 
into matrix equations by putting the values of f and i into well-defined blocks of 
bigger matrices as e.g. 
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in which the dots (…) denote the other columns of the matrices that contain the 
arbitrary parameters of this ambiguous task. Parameter d is a ‘dummy’, that is 
physically not interpreted constant value having the role of evading the occurrence 
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of the mathematically dubious 0→0, 0→finite, finite→0 transformations. There is 
a lot of possibilities to construct easily invertible matrices in (2). For this purpose 
it is expedient to use elements of certain Lie groups that guarantees to find 
element in arbitrary vicinity of the unit matrix that is needed for the Sn→I 
convergence. In [5] various algebraic methods were mentioned in connection with 
the adaptive control of hydraulic differential servo cylinders. In the present paper 
special symplectic matrices are used as 
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in which n denotes the degree of freedom of the system to be controlled. The first 
two columns of M are trivially orthogonal to each other. Parameter d is the 
‘dummy’ component used to evade singular transformations, and the symbols 
e(3),…,e(n+2) denote orthogonal unit vectors that lie in the orthogonal sub-space of 
the first two columns of M. They can be created e.g. by rotating a given vector b 
to into the direction of another given vector a while leaving the orthogonal 
sub-space of these vectors invariant. So if the operation starts with an orthonormal 
set {e(1),…,e(n+2)} and at first it is rigidly rotated until e(1) becomes parallel with the 
1st column of M, its 2nd column will lie in the orthogonal subspace of the 1st one 
spanned by the transformed unit vectors {e*(2),…,e*(n+2)}. In the next step this 
whole set can rigidly be rotated until the new e**(2) vector becomes parallel with 
the 2nd column of M. This operation can be so constructed that it leaves the 
orthogonal subspace of these two vectors invariant. Since the previously 
determined e*(1) lies within this subspace, it remains invariant during this rotation. 
It is very easy to construct these rotations in closed analytical form requiring not 
too much computations. 

In [5] the friction was modeled by the static Striebeck model. In the present 
approach it is replaced by the physically more complete and concise dynamic 
LuGre model that is discussed in details in the sequel. 
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3 Model and Control of the Hydraulic Differential 
Cylinder 

The operation of the differential hydraulic cylinder was described in details e.g. in 
[1]. Let y denote the linear position of the piston in m units. The acceleration of 
the piston with respect to an inertial system of reference is given as 
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in which pA and pB denote the pressures in chamber A and B of the piston in bar, 
ϕ=AA/AB, that is the ratio of the ‘active’ surfaces of the appropriate sides, m is the 
mass of the piston in kg, Ff denotes the internal friction acting between the piston 
and the cylinder, Fd denotes the external disturbance force. The pressure of the oil 
in the chambers also depends on the piston’s position and velocity as 
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where Bv denotes the flow resistance, Kv is the valve amplification, U is the valve 
voltage. (In [1] this quantity was considered as a ‘normalized’ quantity. In the 
present simulations it is supposed to be only bounded that makes it possible 
normalization in the case of any actual implementation.) The oil volume in the 
pipes and the chambers also depend on y and the cylinder stroke H [m] as 

( ) ( ) ( )yHAVyVyAVyV BpipeBBApipeAA −+=+=   ,  (9) 

The hydraulic drive has two stabilized pressure values, the pump pressure p0, and 
the tank pressure pt. Under normal operating conditions (that is when no shock 
waves travel in the pipeline) these pressures set the upper and the lower bound to 
pA and pB. The functions a1 and a2 in (7) and (8) are strongly non-linear functions 
representing the general feature of strongly turbulent flow through pipes or holes 
that the necessary pressure difference between the input and the output sides is 
proportional to the square of the flow of velocity. This a kind of more or less 
‘cubistic’ or rough approximation of the reality that has a more detailed 
description by the Moody Diagram [6] that also has a narrow band for the laminar 
regime and a stochastic one for the transition between the laminar and the 
turbulent regimes. 

Furthermore, the system’s resistance slightly depends on the flow velocity even in 
the turbulent regime, too. 
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However, it is reasonable to suppose that in the case of the normally used 
hydraulic machines practically only the turbulent cases occur, and that the 
singularity of the square root function in zero well represents the drastic 
singularity of the reality whenever fast change in the flow direction of turbulent 
flows happens. Furthermore, under ‘normal conditions’ sign(a1)≥0, and 
sign(a2)≥0, are realistic suppositions according to the limiting role of the pump 
and tank pressures for pA and pB. 

For practically acceptable modeling of friction in (6) in the present paper the 
dynamic LuGre Model is used. Modeling and compensation of friction obtains 
attention even in the most recent works, too. In the special case of single variable 
systems efficient identification techniques were recently elaborated by Seung-Jean 
Kim et al [7], and L. Márton [8]. These techniques use certain friction models 
previously introduced by other researchers. The so called static models as the 
Striebeck Model approximating the stick-slip phenomena play important role in 
the low speed control regime as e.g. in [9]. This model establishes a simple 
approximate functional relationship between the relative velocity of the surfaces 
sliding on each other and the friction forces whenever this relative velocity v 
differs from zero as 
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This model does not give satisfactory description of the ‘sticking’ phenomenon 
i.e. the observation that v stagnates at zero until the external force achieves an 
FC+FS(>FC) limit in its absolute value. It describes only the experienced behavior 
that the friction force decreases with increasing absolute value of the velocity. For 
numerical simulation of stiction this model has to be ‘completed’ by the 
introduction of a fictitious small velocity region centered near zero. If this region 
is achieved the velocity is kept at exactly zero until the external force exceeds the 
limit FC+FS. This way of modeling is not very well substantiated on physical basis 
and the actual value of this velocity limit remains dubious. To provide some 
physical picture the so called Tustin Model can be introduced in which some 
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variable ‘z’ describes a kind of internal deformation of the connected surfaces on 
which the friction force depends. It is a hidden internal degree of freedom that has 
its own equation of state propagation as 

( ) zFz
vvFF

v
v

dt
dz

sSC
0

0 ,
exp

σ
σ

=
−+

−= . (12) 

The simple picture behind this model is the supposition that some elastic 
deformation happens via small springs that partly are destroyed (disconnected) 
with higher displacements. Consequently z can be increased in its absolute value 
only to a velocity-dependent limit, and it stagnates at this value until the velocity 
changes its sign. This changing sign causes abrupt, discontinuous variation in 
dz/dt, and a fast variation in z. In the dynamic LuGre Model the above contribution 
is completed by a pure viscous term, and an additional one behind which the 
deformation of the bristles of some ‘brush’ are hidden as physical models: 

vF
dt
dzzF v++= 10 σσ  (13) 

while (12) remains valid, too. In (13) the proper orientation has to be taken 
regarding the surfaces in contact. Fv describes the viscous friction coefficient, and 
σ1 is a new parameter pertaining to the effect of the bending bristles. This model is 
physically complete in the sense that no any ‘velocity limit’ of dubious 
interpretation must be introduced for its use. The behavior of the whole system is 
described by the dynamic coupling between the hidden internal and the observed 
degrees of freedom. On this reason in the present paper we used (13) in the 
simulations for estimating the effect of friction. In the rough model on the basis of 
which the control was developed this friction model was not taken into account at 
all. 

Returning to the question of the rough model based control, the following 
considerations were done. For the tracking error e:=(yR-yNom) a simple PID 
controller was constructed in the following manner: 

∫−−−=
0

edtIeDPee &&&  (14) 

The appropriate P, D, and I coefficients were determined simply by substituting an 
expected e=exp(αt) type relaxation into the time-derivative of (14) that results in a 
third order polynomial for α. For this polynomial three, slightly different negative 
real roots were prescribed in the form of (α-α1)(α- α2)(α- α3). Substituting this 
into (14) P, D, and I can conveniently be determined. The time-derivative of (14) 
therefore leads to the desired third time-derivative of the piston's trajectory as 

IeeDePyy Nomd −−−= &&&&&&&&&  (15) 

The very rough approximate model of the cylinder was obtained by omitting the 
friction forces and the external disturbance forces in (6) as 
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into which the desired time-derivative of the piston's acceleration was substituted 
and the desired value for dpA/dt was set to 0. Eq. (16) thus immediately yields an 
‘expected’ value for d(pA-pB/ϕ)/dt. Via computing [(7)-(8)/ϕ] this determines the 
proposed control signal U, and from the known current state of the system and (7) 
and (8) the actually obtained dpA/dt, and dpB/dt values can be computed. This can 
be substituted into the time-derivative of (6) yielding the ‘actual’ third time-
derivative of the piston’s displacement. Here special attention has to be paid to the 
problem of observing d3y/dt3, which, in the case of the presence of friction forces, 
may be critical. For filtering out the noisy part of this signal Caputo's definition of 
the fractional order derivatives can be applied. It re-integrates the integer order 
derivative with a kernel function of long tail acting as a frequency filter. 
According to that (15) can be modified as 
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In the practical realization of that the lower limit of the integration is replaced by a 
finite memory t-T. In the numerical approximation of the integral with singular 
integrand the full interval of the integration of length T is divided into small ones 
of length δ during which the reintegrated derivative is supposed to be 
approximately constant (details are given in e.g. in [12]). The next essential point 
is setting the order of derivation. Since according to (13) changing sign of the 
velocity generates drastic changes in the friction forces, due to the controller's 
feedback this force can oscillate whenever zero-transmission happens in the 
velocity. That is, β≅1 is needed for non-zero velocities, and β<1 whenever the 
velocity is in the vicinity of zero. In the present paper the adaptive formula (18) 
was applied, in which instead of the velocity, the observed 3rd time-derivatives are 
used, because this signal is directly related to the controller's feedback. 
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In (18) there are various parameters as A, T, δ, and γ the actual values of which 
numerically concern the quality of control. In the simulations δ=1 ms was chosen 
as a fixed value. The other values were chosen as follows: A=1, T=20 ms, and 
γ=2.5×10-4. It was found that it is expedient to choose very sharp reduction of the 
order of derivation, so the above γ was found to be almost ‘optimal’. (The actual 
value of A was not very important.) The role of the adaptive control was to correct 
the errors of this rough model and the consequences of the unmeasured external 
disturbances. 
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Figure 1 

Trajectory tracking (1st row), phase trajectory tracking (2nd row), chamber pressures (3rd and 4th rows), 
and the friction force (5th row) for the fully adaptive (left column), and the fixed 3rd derivatives based 

control (right column) for an asymptotic nominal trajectory without periodic disturbance force 
component 
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4 Simulation Results 

With the exception of the parameter Eoil all the other parameters given by Bröcker 
and Lemmen in [1] were used. For Eoil Bröcker used 1800×106 Pa, which is a huge 
value representing the approximate incompressibility of liquids. However, in a 
pipe system, due to the elasticity of the pipe walls, or due to complementary 
components intentionally built into the system to reduce this huge stiffness (e.g. 
via using hydraulic accumulators, flexible hoses) this value can be considerably 
smaller. In this paper 18×106 Pa was used in the simulations. Regarding the 
friction model’s parameters we supposed to have σ0=2500 N/m, σ1=500 Ns/m. The 
other parameters were taken from the result of identification made by Bröcker and 
Lemmen in [1]: FC=120 N, FS=180 N, Fv=175 Ns/m, cs=0.019 m/s. In each case 
the external disturbance force had 500 N constant component. 

Fig. 1 belongs to the lack of periodic disturbance force. It convinces the reader 
that the application of the varying order derivation yields considerable 
improvement in the control, regarding both the phase trajectory and trajectory 
tracking. It is obvious that the LuGre Model with its ‘hidden’ internal degree of 
deformation results in more “treatable” description of friction than the rough 
formal model of sticking in which within the velocity limit both the velocity and 
the acceleration becomes zero until the driving force exceeds FC+FS. In Fig. 2 the 
effect of the periodic disturbance force of amplitude 200 N is observed. Since 
there is no possibility to directly measure the disturbance forces, its presence can 
be revealed only by observing the behavior of the controlled system. Due to the 
principle of causality this fact has to reveal itself in the small tracking error that is 
observed by the controller in order to compensate it. The LuGre friction 
considerably influences the internal variables of the adaptive control that can best 
be traced in the zoomed excerpts of the phase trajectories near the asymptotic end 
of the nominal trajectory and in the variation of the  
⏐Sn-I⏐ norm versus time. Fig. 3 reveals that application of the time-varying order 
fractional derivative results in a smoother control in which the reduced feedback 
generates smaller friction forces than the fixed 3rd order derivative based control. 

Conclusions 

To compensate the effect of the imprecisely known system parameters and 
unknown external forces in a servo valve controlled differential hydraulic cylinder 
in this paper an adaptive control was developed. In the control varying order 
fractional derivatives are used to reduce the hectic behavior of the friction force in 
the case of the ‘critical’ phases of the trajectories nearby the zero velocity. 

In this paper the friction was modeled in the simulations by the complex, dynamic 
LuGre model. Another important source of nonlinearity in such systems is of 
hydrodynamic origin. 
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The adaptive part of the controller uses a method belonging to a novel, ‘scalable’ 
branch of soft computing into which various Lie groups can be incorporated as the 
sources of uniform structures and procedures. In this case special symplectic 
matrices were applied. 

 

 

 

 
Figure 2 

Trajectory tracking (1st row), critical excerpt of the phase trajectory tracking (2nd row), friction force 
(3rd row), and the variation adaptive matrix (4th row) for the fully adaptive (left column), and the fixed 
3rd derivatives based control (right column) for an asymptotic nominal trajectory with 200 N periodic 

disturbance force component 
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Figure 3 

Trajectory tracking error (1st row), phase trajectory tracking (2nd row), chamber pressures (3rd and 4th 
rows), and the friction force (5th row) for the fully adaptive (left column), and the fixed 3rd derivatives 

based control (right column) for periodic nominal trajectory with periodic disturbance force component 
of amplitude 200 N 
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It was found that that the application of the varying order derivation yields 
considerable improvement in the control, regarding both the phase trajectory and 
trajectory tracking. It is obvious that the LuGre Model with its ‘hidden’ internal 
degree of deformation results in more ‘treatable’ description of friction than the 
rough formal static Striebeck model of sticking in which within certain velocity 
limit both the velocity and the acceleration becomes zero until the driving force 
exceeds a force limit. This behavior of the LuGre model is very important in the 
low velocity part of the motion when a final fixed position has to be achieved. 
Furthermore, smoother control can be achieved in which the reduced feedback 
generates smaller friction forces than the fixed 3rd order derivative based control. 
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