
SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

479

Visual Studio Class Designer and Unified
Modelling Language

Krisztina Katona
John von Neumann Faculty of Informatics
Budapest Tech
Budapest, Hungary
katona.krisztina@nik.bmf.hu

Abstract: With the launch of Visual Studio 2005, developers got a modelling tool which
produces class diagrams from the code or generates code from diagrams. At first sight it
hardly varies from UML class diagrams. Besides presenting Class Designer I will show
that this difference stems from different software development strategies.

Keywords: software development, class diagram, UML, Visual Studio 2005 Class Designer

1 Visual Representation

1.1 Introduction

There is no software developer who has never used UML diagrams. Unified
Modelling Language is taught at universities, discussed in conferences and used
by anyone in software industry (it even can be found in text-books about
programming like [1]). Class diagrams are the most frequently depicted structures
among UML diagrams. Hence the introduction of this widely used tool into a
development environment is not astonishing. Although Visual Studio Class
Designer builds on UML notation, it did not take from its philosophy in one block.

First I will point out the apparent differences that can be seen on diagrams and
then gradually being lost in methodologies. Figures 1 and 2 show class diagrams
associated to the same code drawing with UML notation and in Visual Studio
Class Designer, respectively. Many slight differences can be recognised at first
sight: graphical notations changed in VS, some extra notations occur specialised
for a certain language and dependency relationships cannot be depicted. (This
example associates to C# code.)

K. Katona • Visual Studio Class Designer and Unified Modelling Language

480

Address

- street : string
- zipCode : int

Customer

- firstName : string
- lastName : string

+ OrderGoods ([in] product : Product)

- address

Order

Product

«delegate»
OrderShipped

+ Invoke ()

«event»
+ OrderShipped

Figure 1

Figure 2

1.2 Differences at First Sight

1.2.1 Layout

Rounded rectangles instead of straight ones in VS express deliberately the
difference from UML class notation.

1.2.2 Language-Specific Notation

The language-specific notation is inherently better in VS Class Designer because
it is designed for a certain tool namely the Visual Studio, so it derives types from

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

481

CLR. ‘The Visual Studio Class Designer is a visual code design tool that is an
integrated design experience for the .NET Framework. The visual experience of
Class Designer is closely tied to the common language runtime. CLR shapes such
as classes, structures, and interfaces are represented by visually distinct shapes
that indicate their identity. Furthermore, the terminology in the diagram is
language specific-for example in Visual Basic, you might work with Public,
Private and Friend access levels, whereas in C# they will be displayed as public,
private, and internal.’ [2] While the UML concept is the opposite: ‘UML must
work with various implementation languages without incorporating them
explicitly.’ [3]

1.2.3 Dependency Relationship

The lack of dependency relationships follows from the fact that VS Class Diagram
does real-time code generation and generating diagrams from code. The class
diagram is actually a live view of the code. A dependency in a model cannot be
transformed into code automatically. Hence, it cannot exist in the model. This is
the key point where the two concepts vary from each other and it affects deeper
distinction. To understand the difference better, observe the Visual Studio’s
concept thoughtfully.

1.3 Visual Studio 2005 Class Designer

1.3.1 Domain Specific Language

Class Designer is an external component of the Visual Studio supported in
Professional Edition and above. It is a Domain Specific Language which means a
small, highly focused language for solving some clearly identifiable problem.
Microsoft defines Domain Specific Language with the following ideas [4]:

 A model should be a first-class artifact in a project—not just a piece of
documentation waiting to become outdated.

 A model represents a set of abstractions that support a developer in a well-
defined aspect of development.

 Since models can abstract and aggregate information from a number of
artifacts, they can more readily support consistency checks and other forms of
analysis.

 Models can be implemented by a process similar to compilation, where the
code, configuration files, and other implementation artifacts generated by the
compiler are never edited by hand.

K. Katona • Visual Studio Class Designer and Unified Modelling Language

482

1.3.2 File Format

Class Designer features constantly updating with changes between the code and
the diagram. Any changes made will be echoed. The class diagram file exists as a
part of the project with the extension .cd in plain XML format. The class diagram
itself stores only visual information, and contains no information about the content
of the code. The cd file of Figure 3 is the following:

Figure 3

<?xml version="1.0" encoding="utf-8"?>
<ClassDiagram MajorVersion="1"
MinorVersion="1"
MembersFormat="NameAndType">

 <Class Name="ClassLibrarySisy.Thing">
 <Position X="0.5" Y="0.5" Width="1.5" />
 <TypeIdentifier>
 <FileName>BaseClass.cs</FileName>
 <HashCode>AAAAAAAAAAAAAAAE-
AAAAAAAAAAAEAAAAAAAAAAAAAAA=
</HashCode>
 </TypeIdentifier>
 </Class>
 <Class Name="ClassLibrarySisy.LivingThing">
 <Position X="0.5" Y="2.5" Width="1.5" />
 <TypeIdentifier>
 <FileName>BaseClass.cs</FileName>
 <HashCode>AAAAAAAAAAAAQAAA-
AEAAAAAAAAAAAAAAAAAAAAAAAAA=
</HashCode>
 </TypeIdentifier>
 </Class>
</ClassDiagram>

In XML file the ClassDiagram is the top level element which describes the setting
applicable to the whole diagram. Then font is determined by the attribute Name
and Size. For each class its position and width are described with added
information whether the class box is collapsed and about inheritance and
association lines. Information about fields and methods of the class are not stored
in diagram file.

The fully qualified name of the type associates a shape with the code. While
modifying the name of a class, change is reflected in the designer provided that it
is open. Otherwise hash code value helps associate the shape to the code. This

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

483

value is computed from the member signatures in the class. When the class
diagram is opened and does not find the name of a class, the class designer will
look for other classes defined in the same file and compute the hash value for
those classes. If it finds one within a certain value, then class designer will assume
that type to be the one representing the shape and associate it with that shape. [5]

2 Software Development Concepts

The connection between code and diagram files involves that model and source
code are essentially equal. This idea leads to the theory that class diagram is the
graphical representation of code. Moreover, code is supposed to be the
functionality of software. It can be represented many ways such as text or
diagram. [6]

2.1 Agile Software Development

The previous conception overlaps and supports agile software development
processes. Agile Alliance states four values as manifesto to follow while
developing software. These became the basic principles of agile software
development: [7]

 Individuals and interactions over process and tools

 Working software over comprehensive documentation

 Customer collaboration over contract negotiation

 Responding to change over following plan

Rapid changes and interactions are preferred to predetermine well-defined plans.
Class Designer facilitates this type of work by showing code and model together.
As source code and class diagram always reflect each other without any difference
the design and implementation phase can be really iterative. It does not take time
to switch over from one to the other.

2.2 Unified Modelling Language and Unified Process

On the contrary, UML is a general-purpose visual modelling language which
captures decisions and understanding about systems that must be constructed. [8]
There are many modelling tools which generate code from UML model and use
reverse engineering, but the ease of their usage differs from Visual Studio Class
Designer’s work. However these tools provide more detailed form of models.
They are capable highlight minor differences which can be important in

K. Katona • Visual Studio Class Designer and Unified Modelling Language

484

understanding the model. For example association relationship has two subtypes
(aggregation and composition) in UML while they appear in the same way in the
code. Hence the distinct between the types of association cannot be derived from
the code and therefore Visual Studio Class Designer is unable to visualize the
difference.

Unified Process, the methodology built on UML, is a fairly rigid software
development method based on spiral model. It clearly defines workflows and
makes a distinction between design and implementation phase. Detailed and
accurately defined UML models play an important role in the entire development
process on all lifecycle stages. [9]

2.3 Different Use

Unified Process and agile development processes stems from the same root,
although agile methods can use the experience of UP. Agile developments are
suitable for small companies at small or middle projects. At this size quick
respond to change can be achieved which is supported by Class Designer. It does
not need to analyze the system as deeply as it is important at a large project.
Unified Process can cope with large projects by using all aspects of UML. It needs
effective proficiency and more abstract skills.

Conclusions

Visual Studio Class Diagram can use the experience of working with CASE tools
and UML notations. It is designed for small and middle project which are
developed by average skill professionals. Its method is suitable for agile software
developments. So Class Designer can be supposed to state at a higher stage of
evolution of software development methods. At the same time, large projects need
in-depth analysis that can be provided by the whole UML notation. In this case
Visual Studio’s devices are not enough.

Both concepts contribute to improving of software development quality and
hereby better software quality. Different teams need different methods so both
concepts have reason for existence side by side. Although I believe that we will
see newer and more perfect solutions in software development.

References

[1] Sipos Marianna: Programozás élesben, InfoKit, 2004

[2] Matthew A. Stoecker: Visual Studio 2005 Class Designer, MSDN,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dv_vstechart/html/clssdsgnr.asp (last visited July 2006)

[3] J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language
Reference Manual, Addison-Wesley, Second Edition, p. 123

SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems

485

[4] Microsoft Corporation: Visual Studio 2005 Team System Modeling
Strategy and FAQ, MSDN,
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnvs05/html/vstsmodel.asp (last visited July 2006)

[5] ClassDesigner's WebLog: http://blogs.msdn.com/classdesigner/ () last
visited July 2006-07-15

[6] R. Hundhausen: Fejlesztői csoportmunka Microsoft Visual Studio 2005
Team System, Szak Kiadó 2006
Original Englis language edition: R. Hundhausen: Working with Microsoft
Visual Studio 2005 Team System, Microsoft Corporation, 2005

[7] Agile Manifesto, http://agilemanifesto.org (last visited July 2006)

[8] J. Rumbaugh, I. Jacobson, G. Booch: The Unified Modeling Language
Reference Manual, Addison-Wesley, Second Edition, p. 3

[9] J. Tick: Software User Interface Modelling with UML Support,
Proceedings of the IEEE 3rd International Conference on Computational
Cybernetics, ICCC 2005, Hotel Le Victoria, Mauritius, April 13-16, 2005,
pp. 325-328

