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Abstract: The properties of the Lucas-Kanade detector in motion tracking have been 
analysed considering the influence of typical signal forms, sampling methods and frequency 
domain filtering on the accuracy and computation time. Based on the investigation a simple 
convolution filter has been elaborated which is able to balance low and high frequency 
information in the images in a single step. 
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1 Introduction of the LK Detector 

1.1 Brief Preview 

The Lucas Kanade Optical flow detector is a wellknown tool in motion tracking. 
This detector is the basis of many image pairing algorithm. Image pairing is a first 
and critical step of nowadays 3D vision systems. These vision systems are 
intensively used in Robotics and vehicle control The main goal of this paper is to 
clarify these capabilities, so the developers get know what they can and can not 
expect at higher levels of image matching solutions. The Lucas-Kanade detector is 
a gradient based displacement detector. It does not give exact solution, only a 
relatively good solution. Theoretically, the accuracy is inversely proportional with 
the disparity (and thus with the displacement), this is why the original approach 
handles this problem by iterative calculation. 10..40 iterations are mentioned in 
[4]. In practice, the effect of intensity integration along a pixel causes the accuracy 
decrease in the case of very small displacements. Our investigation focused on the 
simulation of this problem. The hierarchical (or multi-resolution) approach is 
mentioned also in the first paper of Lucas and Kanade [1]. This approach changes 
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the role of iterations, since by five processing stages we are 'iterating' five times 
by default. The question is, if it is possible to implement such a hierarchical LK 
detector, that one iteration per resolution stage is enough to get sub-pixel accurate 
final results. 

The LK detector is commonly used to determine transformation between two 
images, if the displacement is not more than a few pixels. The hierarchical 
approach could extend its capability to handle greater, but still not so far 
displacements. On the other hand, the hierarchical approach has many occurring 
problems. It is useful to investigate the capabilities of the simple one stage 
detector prior to the development of a robust hierarchical LK detector. In this 
article we present the results of two interesting investigation, in conjunction with 
the requirements that are stood up by the results against a well-performing 
algorithm. 

1.2 1D Case 

The basic idea of the LK detector assumes that the displacement between two 
functions is infinitesimal, and the shapes of these functions are smooth (they 
contain frequencies corresponding to longer wavelengths than the grade of the 
displacement). Such a signal, if displaced by an infinitesimal ds , satisfies 

dsaxfxf ⋅=− )()( 12 , where 

),()();()( 21 dsxfxfxfxf +==  and 

a  is the slope of the function ( )dsdfa /=  at the investigated location. If we 
measure 21, ff  as two different signals, we can compute an approximation to ds : 

,
2

))()(( 21 xfxfa
′+′

=  

 ),()( 12 xfxff −=Δ  

fads Δ=⋅   (1) 

It is intentional, that we did not expressed a  exactly, since if we perform n  
measurements in n  different locations, than ds  must satisfy (1) for all ni ≤ . The 
simultaneous equations ii fads Δ=⋅  can not be satisfied, only their error can be 
minimised, which yields to a Least-Squares (LS) problem. 

1.3 Formulas for the 2D Case 

Extending the above deduction to the second dimension yields to the following 
formulas: 
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( ) 221 dxdfdxdfxi +=Δ  at ii yx ;  

( ) 221 dxdfdxdfxi +=Δ  at ii yx ;  

12 fffi −=Δ  at ii yx ;  

(this is known also as the images' derivative respect to time, itΔ ) 
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The computation of the derivatives is done by the following masks: 
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These formulas give proper results for images having a pure, small shift, and 
having no frequencies below the wavelength of few pixels. 

However, low frequency images with a transformation other than a shift operation 
contain different displacement at each location. The common method to handle 
this is to divide the screen into sensor windows, assuming that the displacement 
within each window can be considered as constant. The window size is a 
parameter (the only one) of the 2D LK detector, typically 8..32. [3]. 

1.4 Short Description of the Hierarchical Approach 

The hierarchical approach takes over the one-pixel displacement limit by 
drastically enlarging pixel size. This is done recursively by integrating 2*2 pixel 
windows into one pixel of the new image. On the other hand this method 
drastically reduces image details. Therefore, after determining the displacement on 
the lowest resolution version of the images, both original images are corrected by 
the detected optical flow, and fine details of the flow are determined by using 
higher and higher resolution images. 
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1.5 Affine Extension 

Another problem occurs, when the image in the window of interest satisfies the 
frequency and displacement level, but contains a high amount of rotation, or other 
affine transformation [1],[4], see Fig. 1. 

Figure 1 
Two superimposed images showing rotation around 15 degrees 

If we modify the elementary detector to look for an affine transformation, not for a 
simple shift, than this problem can be solved: 

Let the searched transformation be: 
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At each 2*2 measure window, we have the following (measured) relation: 
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we get a linear relation to the elements of A : 

[ ] ii fvaaaaaa Δ=⋅ :232221131211 , where 
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Solving the resulting LS problem can get the best solution for A . 

If the main goal of the usage of the LK detector is to determine an affine 
transformation between two images, than the elementary sensor window can be 
enlarged to incorporate the whole picture. 
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2 Capabilities of the LK Detector 

2.1 Typical Images 

Applying a simple, downloadable LK detector to real images, it can be realised 
that the displacement could be greater than one pixel in many cases. Fig. 2 shows 
a typical case for images in an enlarged sensor window: 

Figure 2 
Typical input: The difference of two shifted images with 50% grey bias is shown 

We investigated, what is the best method to handle displacements of 5..10 pixels. 
First, a series of basic experiments was carried out, to clearly discover the 
capabilities of the detector. The one-dimensional case was chosen for these tests. 

2.2 One Dimensional Tests 

2.2.1 Used Signal Forms 

The following signals were used to test the basic 1D detector, see Fig. 3: 

- rectangular impulse 

- unit step 

- equilateral triangle 

- unit ramp 

- continuous sine wave 

- vertically shifted (co)sine wave of one period (Hanning window) 
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Figure 3 
The signals (the signal width parameter was chosen to 2 for this figures) 

2.3 Handling the Sampling Effect 

Real, advanced image recording devices integrate image intensity over a pixel, 
which has a strong effect on details if their sizes are around or less than one pixel. 
Usually, the LK detector is expected to produce results with sub-pixel accuracy. 
Therefore, it was considered to be useful to simulate the sampling phenomenon. 
To carry out the integral of the algorithmically given function )(xf  between 1x  
and 2x  is easy, if not only )(xf  but the primitive function of it is given 
(implemented) algorithmically. One can recognise that it is not necessary to be 
able to evaluate )(xf  for these tests if one can evaluate the primitive function. 
Therefore, we implemented the above mentioned waveforms through their 
integrals. 

2.4 Results 

Each of the test signals was shifted by a series of displacement. Then, the original 
and the shifted signal were shifted by a random value before applying the 
sampling effect. After this, the 1D LK detector was applied and the calculated 
displacement wes compared to the original one. The measurements were collected 
into a table, which shows the ratio of the detected and the real displacement for the 
used test signals with various width and displacement levels. Since the table 
would have more thousand entries, hence only a compressed representation is 
shown, see Table 1 and 2 containing: horizontal: width; vertical: signal type; 
value: the real displacement (pixels) interval, for which the accuracy is within the 
80-125% boundary. 

Table 1 
Results: Spatial domain signals 

Signal parameter (width in pixels) Signal 
0.5 1 1.5 2 3 4 

Impulse 0.5-1.1 0.8-1.2 0.6-1.6 0.3-2 0-1.9 0-1.8 
Unit step 0-1.9                       (this signal do not have width) 
Triangle 0.8-1.2 0.6-1.2 0.4-1.5 0.7-1.5 0-1.9 0-2.4 
Unit ramp 0.3-1.9 0-2.2 0-2.6 0-3.2 0-4.4 0-5.5 
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Table 2 
Results: frequency domain signals 

Signal parameter (wavelength in pixels) Signal 
2 3 4 6 8 10 

Sine wave - 0.8-1.1 0.5-1.2 0-1.7 0-2.2 0-2.5 
Hanning 0.5-1.4 0.5-1.7 0-2.1 0-3.1 0-4.2 0-5.1 

If we look after results where the absolute error is less than 0.5 pixel, we get 
similar results as by the relative error limit. 

2.5 Consequences 

2.5.1 Spatial domain 

Good result is if the shift is less or around 1 pixel for lower frequency signals. 

2.5.2 Frequency domain 

Good result is for shifts less thanπ /2 for pure sinusoidal signals, and less than π  
for the Hanning signal. The detected translation is within the 80%-125% interval 
in the case of wavelengths greater than 4 pixels. 

2.6 Conclusion 

The best way to handle displacements seen in the Fig. 2 is to use only low 
frequency spatial information, which can be done by a simple low pass 2D 
convolution with, or without an additional lower resolution resampling. The 
undersampling is part of the standard hierarchical processing, but the additionally 
used filter should be designed by the consideration of the described experiment. 

2.7 Problem of Low Frequency Noise 

We used the detector to match details of two previously alligned images. Both of 
them contained the same scenario, but different shades were superimposed on 
them. However, this type of intensity error between the images causes the detector 
to fail. We found that high-pass filtering the image helps to solve this problem, 
since the shading has effect on few processing stages only. We have choosen the 
cut-off frequency of the high pass filter to be the double of the low-pass filter’s cut 
off. 
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2.8 Requirements Against a Filter for each Hierarchical Stage 

As we can see, at first glance, a filter that transmits only the octave of 
95.4 << λ  is favourable. It is useful to set up another requirement, which takes 

the hierarchical approach into account: If there is a component having the 
frequency f , and it is subjected to go through the filters of each hierarchical stage 
(placed one octave apart), then the sum of amplitudes of the filtered signals (of the 
same frequency) should be the same for any frequency. This property assures that 
every image frequency contributes to the final result by the same grade. 

2.8.1 Formulas 

If we denote the filters transfer characteristic as )( fW , then the above mentioned 
requirements can be expressed in compact form: 

∑
−=

=⋅∀
inf

inf
:)2(:

i

i cfWf , 

where c is a constant, around 2, if 

1)(max =fW . 

Let us choose three wavelengths, which will be analysed in the terms of the above 
expression, 61 =λ , 52 =λ , 43 =λ . Let us assume that the current hierarchical stage 
was preceded and will be followed by other stages, which will be indexed 
relatively to this stage. The index of the current stage is 0. The contribution of this 
wave to several processing stages will be: 

),...2*(),(),5.0*( 101 fWWfWWfWW === −  

Based on the above requirements and concerning simplicity and computational 
requirements, the following 2D filter mask has been elaborated and 
experimentally tested: 
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Which has an equivalent 1D convolution as: 

[ ] 4815110151 −−−−  



SISY 2006 • 4th Serbian-Hungarian Joint Symposium on Intelligent Systems 

 

511

The transfer values of this filter for the tested wavelengths at different stages are 
summarised in Table 3: 

Table 3 
Transfer characteristics 

Stage # 3 2 1 0 -1 Total contrib. 
λ’(pixels) 48 24 12 6 3 - 
W(1/λ’) 0.02 0.09 0.33 0.87 0.58 1.89 

λ’(pixels) 40 20 10 5 2.5 - 
W(1/λ’) 0.03 0.13 0.44 0.98 0.23 1.81 

λ’(pixels) 32 16 8 4 2 - 
W(1/λ’) 0.05 0.19 0.62 0.97 0.0002 1.83 

3 Computational Requirements 

3.1 Running Time of the Affine Extension 

It is necessary to compare the computational time of the standard and the affine 
LK detector [2]: 

3.1.1 Standard LK Detector 

The computational time of the standard LK detector on two images containing m 
pixels, with a n*n sensor window can be expressed as: 

T=number_of_pixels*(calc.of_derivatives+accumulation_for_the_LS_solution)+ 
number_of_windows* 2D_LS_solution= 

m*((9 add +4 far_read)+(4 add+4 mul+2 add+2 mul))+m/(n*n)*T_2D_LS= 

m*(15 add+ 4 far_read +6 mul)+m/(n*n)*T_2D_LS= 

m*25 op +m/(n*n)*(2 mul+1 add+ 1 div+ 4 mul+ 2 add)= 

m*(25 op +1/(n*n)*(9 op+ 1 div) ) 

The division usually takes much longer than other operations denoted as ‘op’. 

3.1.2 Affine LK Detector 

The computational time of the extended affine LK detector can be expressed as: 
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T=number_of_pixels*(calc.of_derivatives+accumulation_for_the_LS_solution)+1
*T_6D_LS_solution= 

m*(9 add+4 far_read + 4 mul+36 mul+36 add+6 mul+6 add)+T_6D_LS= 

m*(51 add+ 4 far_read +42 mul)+ 6D LS=m*97 op+T_6D_LS 

If we count each type of operation to take the same time, than the affine algorithm 
is four times slower than the standard one. In the case of big images, this can be 
reduced. 

Conclusions and Further Research 

In this paper we shared the results of basic experiments on the Lucas-Kanade 
detector in motion tracking regarding signal form in the image, sampling 
technique, and frequency domain properties. Based on the investigation a simple 
convolution filter has been elaborated which is able to balance low and high 
frequency information in the images in a single step. We found these results to be 
useful in the implementation and improvement of such a detector. 

Our final goal is obtain a robust image pairing algorithm which can handle higher 
amount of disparity than observed on video sequences. The implementation of a 
robust hierarchical detector is in progress. Several extensions will be tested to 
provide significance information for higher processing stages. 
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