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1 Introduction 

The original idea of reasoning and control within fuzzy rule bases was proposed 
by Zadeh [1], and was called the Compositional Rule of Inference (CRI) and had 
the disadvantage of running directly in the k-dimensional input space (where k is 
the number of variables) while being able however to describe multi-dimensional 
membership function distributions of arbitrary shape. Its modified version, the 
Mamdani-algorithm [2] applied the projections of the antecedents and thus 

returned to the form of rules BAR ii →= , where ∏
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, meaning 

that only such iA  could be used that were the cylindrical closures of some 

membership functions ikA , each being of the type ]1,0[ : →mim XA . This 
method offers much better computational speed. 

The CRI, the Mamdani-algorithm and its variants, the Takagi-Sugeno method [3] 
use the intersections of the observation with the antecedents  in order to determine 
the output of the system. Therefore, if the rule base contains gaps in between the 
rule antecedents in at least one dimension, these methods are simply not 
applicable, because in such a case no firing rule(s), and hence, no actual outcome 
can be determined. Such a rule base is called sparse. This concept is defined 
precisely in the next section 
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2 Interpolation in sparse fuzzy rule bases 

2.1 Sparse rule bases 

A common feature of  fuzzy rule bases is that the antecedents form a collection of 
fuzzy sets, where their kernels (either single points or intervals) represent typical 
values of x, and between these kernels the membership functions cover the space, 
so that for every Xx∈  there is at least one such antecedent, which is true over x 
at least to a fixed degree 0>α . Formally: 

Definition 1 If  

{ } 0)( :)1...(j ,...1 , >≥∈∃=∈∀ αiji xArjkiXx  

then { } )...1( rjAji =  form an α -cover of iX . If also 

{ } 0)( :)1...(j  , >≥∈∃∈∀ αxArjXx j  

is fulfilled, then { } 1...r)(j =jA is an α -cover of X. 

Consequently, if for given α  the antecedents form no α -cover, the rule base is 
α -sparse. If they do not form a cover for any 0>α , the rule base is sparse. That 
is 

Definition 2 If  

{ } α<∈∀=∈∃ )( :)1...(j ,...1 , iji xArjkiXx   (1) 

for a fixed 0>α , then the antecedent system { } 1...r)(j =jA , i.e. the rule base 

itself is  α -sparse. If (1) is true for any 0>α  then the system is sparse. 

Now, we list some reasons leading to incomplete rule bases. First, reducing the 
number of the rules in a base and, subsequently, the complexity of the resulting 
fuzzy system by omitting redundant rules with proper technique can result in 
incomplete rule base [4]. This research topic, emerged in the early 90s, was the 
main motivation of the fuzzy interpolation. The use of sparse rule base allows 
removal of redundant rules with proper techniques even if the resulted rule set 
contains ``gaps''. 

Second, the incomplete knowledge about the modeled system, regardless of the 
construction of the rule base can result sparse rule bases. Originally, on the basis 
of Zadeh's concepts, fuzzy systems were constructed from linguistic IF-THEN 
rules provided by a human expert. More recently, learning techniques have 
increasingly been developed and applied to the construction of fuzzy IF-THEN 



rules from numerical sample data. Both cases of constructing rule bases can result 
in sparse rule basis. In case of using learning techniques it may happen that the 
sample data do not sufficiently well represent input parameters which only occur 
rather infrequently. In the case of rules obtained from human expertise, an 
incomplete rule base can be the consequence of missing knowledge for certain 
system configuration. 

Third, there also exist motivations starting from dense rule bases which end in 
incomplete rule bases: by tuning the rules of an originally α -cover type rule base, 
the rule premises are partially shifted and shrunk and the tuned model can also 
contain gaps. 

Fourth, ``gaps'' can be defined between rule bases. Hence, fuzzy interpolation 
techniques has important role in hierarchically structured systems. 

2.2 Fuzzy distances 

Instead the intersection operator used in the classical algorithms, a more general 
notion of the degree of similarity was introduced in [5], based on a general notion 
of distance. 

Definition 3. The family of α -distances between two convex and normal fuzzy 
sets (CNF sets) is  

               { }{ }=∈∈= LUCAAdAAd C , ],1,0(),,(),(~
2121 αα  

                                   { } ]1,0( ,, 2121 ∈−−= ααααα UULL AAAA , 

where subscripts L and U denoting the minimum and maximum of the respective 
α -cuts. 

For simplicity, the distance belonging to fixed α  and L or U will be denoted by 
),( 21 AAd Cα . The conditions for the existence of the fuzzy distance set is that 

both fuzzy sets are CNF, and that they are comparable in the sense of p . 

Using this notion of distance, the fuzzy similarity set can be defined as  
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the elements of the similarity degree set being the reciprocals of the elements of 
the distance set. 



2.3 The KH interpolation 

The basic idea of the fuzzy rule interpolation is formulated in the Fundamental 
Equation of Rule Interpolation (FERI): 

),(:),(),(:),( 2
*

1
*

2
*

1
* BBDBBDAADAAD = . 

In this equation *A and *B denote the observation and the corresponding 
conclusion, while 222211 , BARBAR →=→=  are the rules to be 

interpolated, such that 2
*

1 AAA pp  and 21 BB p . If D denotes the Euclidean 

distance between two symbols, the solution for *B results in simple linear 
interpolation. If dD ~

=  (the fuzzy distance family), linear interpolation between 
corresponding α -cuts is performed. 

A more general form of  FERI gives 

( ]1,0,),(
1

*** ∈= ∑
=

αααα

r

i
ii BAAsB , 

where αs  is some α -cut related similarity degree, e.g., the fuzzy similarity 
obtained from the reciprocal distances of the α -cuts. This similarity can be 
considered as an extended “degree of matching”, and its value replaces the 
degrees )( *xAi  used in the classical fuzzy reasoning algorithms in the fuzzy 
interpolation techniques.. The first such method was proposed in [6], and known 
as KH-interpolation  The conclusion is created by 
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where the normalized degree of similarity for fixed α  and C is the reciprocal 
distance of the observation from the corresponding antecedent, divided by the sum 
of all these distances.  
The main purpose of fuzzy rule interpolation was the great computational 
complexity requirement of classical fuzzy reasoning methods \cite{KHsizered}. 
The rule interpolation is efficient if the shape of the rules is simple, practically 
piecewise linear, moreover, triangular or trapezoidal, since then the rules, i.e. the 
fuzzy sets involved in them, can be described with only few characteristic points. 
(In the latter cases, it is enough to do calculations for B∈α , the breakpoint level 
or characteristic point set of the membership functions, which is four points 



altogether [6]: { }UL,;1,0 .) It is a natural demand that the method should 
determine the conclusion based only on a sufficient number of α-cuts, namely, 
based on the characteristic points (or breakpoint levels) of the involved sets, 
because otherwise the calculation becomes too ``expensive''. Although it could be 
expected that the conclusion preserves the linearity of the premises, it is not 
satisfied in general, i.e., the shape of the conclusion can differ from the shape of 
the other involved sets. Kóczy and Kovács [7], Kawase and Chen [8], and Shi and 
Mizumoto [9] examined the condition for preserving linearity for the generated 
conclusion. The investigations give estimation for the linear deviation error, which 
turns out to be considerable low for most practical cases. It means that it is 
sufficient to calculate the conclusion only for characteristic points. 

It must be noted, however, that *B reconstructed directly from the above α -cuts 
does not always exist, as various abnormalities in the shape of the conclusion 
might necessitate some transformations, which eventually result in obtaining sub-
normal conclusions (cf. [7, 10]). This feature of the KH interpolation stimulated 
many researcher to improve the original method and to introduce other, 
conceptually different ones. These approaches are investigated in the next section.  

Before turning to the other fuzzy interpolation methods, it should be noted that the 
linear KH interpolation and its more sophisticated version possesses other 
advantageous properties such as the mathematical stability, which is equivalent in 
certain sense with the universal approximation property [11]. 

3 Alternative fuzzy interpolation methods 

The method proposed by Vas, Kalmár and Kóczy [12] decreases the limit of 
applicability of the method, but does not eliminate it completely. They compute 
the conclusion based on the distance of the central points and the supports of fuzzy 
sets. 

Conceptually different approaches were proposed by Baranyi, Kóczy and Gedeon 
in 1996 [13] based on the relation of the fuzzy sets and by Baranyi et al. in 1998 
[14] based on the semantic and interrelational features of fuzzy sets. They 
determined the location (central point or most typical point) of the conclusion 
based on the ratio of the centres of the observation and the antecedents. After all 
involved sets are rotated by 90º around their centres, and by connecting the 
corresponding points of antecedents, and consequents, two solids can be formed: 
one in the input and one in the output dimension. The solids are cut at the centres 
of the observation and at the determined location of the conclusion, respectively, 

which results in the set
'*A  in the input space and in the set 

'*B  in the output 

space. Then a revision function is used to determine the final conclusion 
'*B  



based on the similarity of the observation *A  and the “interpolated” observation 
'*A . These methods have numerous advantages relating to the previous ones as 

they always give conclusion interpretable as fuzzy set (that is, the abnormal shape 
of the conclusion is precluded), they can be applied for arbitrary shape fuzzy sets 
(neither convexity nor normality is prescribed), only the centres of the sets have to 
be ordered (i.e., some part of the observation can exceed the support of 
antecedents), further, the versions specialized for piecewise linear fuzzy sets 
produce piecewise linear fuzzy set as conclusion, hence the shape of the set at 
hand is preserved. The only problematic point of these methods is that the 
calculation of the revision function even for the special piecewise linear case 
needs considerable time, thus one of the most important reasons for inventing 
fuzzy interpolation technique is violated.  

Another fuzzy interpolation technique was proposed in 1996 by Gedeon and 
Kóczy [15] founded on the preservation of relative fuzziness. This approach can 
not be applied for certain crisp sets. This method was improved by Kóczy et al. in 
1997 [16], which is suitable for the above mentioned crisp sets, as well. The 
authors also showed its immediate connection with the fundamental equation of 
fuzzy interpolation. These methods are applicable also for CNF sets. 

In 1996 Kovács and Kóczy proposed yet another interpolation method based on 
the approximation of the vague environment of fuzzy rule bases.  
Now we will introduced in more detail the modified α -cut based fuzzy 
interpolation method, also known as MACI method [17].  

4 The MACI method 

For the sake of simplicity, in this paper only piecewise linear fuzzy sets are 
considered. (We remark that in [18] a method for arbitrary continuous CNF set is 
presented.) The method uses the vector representation of fuzzy sets, which assigns 
to every fuzzy set a vector of its characteristic points. Then fuzzy set A is 
represented by a vector ],,,,[ 0 nm aaaa KK−=  where ka ],[( nmk −∈ ) are 

the characteristic points of A and 0a  is the reference point of A with membership 

degree one. From this, ],,[ 0aaa mL K−= , and ],,[ 0 nU aaa K=  represent the 
left flank and right flank of A, respectively. If A is a CNF then, e.g. for the right 
flank, ji aa ≥ , ],0[ nji ∈<  should hold with monotone decreasing α  levels. 

When it is not ambiguous we omit subscripts L and U. 

Let us suppose further, that two rules with the observation fulfill the condition 
concerning the location and the ordering of the involved fuzzy sets. The 



abnormality is avoided if the characteristic points of the conclusion fulfills the 
following inequality: 

],[** nmjibb ji −∈<∀≥ .    (2) 

The new method consist of three steps: choosing an appropriate coordinate system 
for the output space, computing the conclusion (according to the KH interpolation 
method), and finally this conclusion is transformed back into the original 
coordinate system. The condition (2) is assured by the choice of an appropriate 
transformation, which prevents the occurrence of abnormal conclusions. A 
detailed description of the method can be found in [17]. Using the following 
notations: 
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 (i.e. the value of the k coordinate is calculated according to the original KH 
approach), the conclusion of the MACI method is computed by the formulas: 
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],0[ nk ∈ for the right flank (3), and ]0,[ mk −∈ , for the left flank (4). For 

the reference point the two equations give the same output. 

Notice that from (3) results that 
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which applied recursively, for 2,,1K−k  leads to 
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Analogous relations hold for the left flank). 



From (5) it is obvious that *
1

*
−− kk bb  is positive (it is a linear combination of two 

positive quantities), and thus the conclusion cannot be abnormal.  

It is also very easy to verify that if the observation coincides with one of the 
antecedents then the conclusion will be exactly the corresponding consequence. 

An important step in the algorithm is the assignment of the characteristic values to 
a certain set of fuzzy sets, whose breakpoint sets are different. Since, in (4) the 
coefficients kλ  correspond to the input variable, namely, to the kth coordinate of 
the antecedents and the observation, but the calculated value corresponds to the 
kth coordinate of the conclusion, hence, in order to avoid confusion a common 
breakpoint level set should be determined for both spaces, which is the union of 
(perhaps different) breakpoint level sets for each variable.  

Finally, we remark that multivariable antecedents can be handled analogously as 
the transformation described in this section affects only the consequent part. 
Common combined antecedent sets (and observation) can be calculated from the 
corresponding antecedents (observation) of each variable using Minkowski-type 
distance, where the weights are identical to 1. 
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