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Abstract. On the power-set of the set of k-valued logical functions, there is defined a closure operation, called pr-closure. A 
set of k-valued logical functions is called pr-closed (or pr-clone), if it was a clone, closed under primitive recursion. (Clone is 
a set of functions containing the projections, and closed under composition of functions.) We prove, that in the case of truth-
functions (k=2) there are exactly two pr-clone. In the general case, our main result is to present and prove the basic theorem 
of pr-completness (similar to the theorem of Rosenberg). 
 
1.Introduction. 
 Since the seventies and eighties the investigations of clones are a main area of universal algebra and many-
valued logics. The inclusion structure of the set of closed classes for two-valued logic was given by Post[P-41] 
(This is nearly the subclone lattice). All maximal classes in k-valued logics were given for k=3 and k≥3 by 
Yablonskii and Rosenberg, respectively. [see R-77] According to a result of Yanov and Mučnik [see P-K-79], 
there are clones infinitely generated (both without and with base) and a continuum of clones in k-valued logics 
(for k>2). In this monograph, the authors investigated both the maximal and the minimal length of chains of 
subclone-lattice of k-valued logics, too. The complete lattice of the maximal linear clones in prime-valued logics 
was given in [B-91] and in [B-D-80].  
We defined the pr-clone closure [B-91, B-93] in order to investigate certain subclone lattices. Moreover, it is a 
usual way in computer science to define functions by primitive recursion and we extended this operation to k-
valued logic. 
 
In part 2, after definitions and denotations there are mentioned generalizations and another definition of 
primitive recursion for finite base set (cyclic recursion). 
 
In part 3 there is given the lattice of pr-clones for truth functions. This lattice is very simple; it is a chain with 
two elements. Moreover, both of these pr-clones are generated with one element, and each of the truth functions 
generate one of these pr-clones. 
 
In part 4 there is presented the main result. There are given pr-Sheffer functions with one variable and a 
Słupecki-kind theorem for pr-clones. We present, that in k-valued logics each function is primitive recursive. As 
a main result, there are given all of the pr-maximal clones and the basic theorem of pr-completeness. 
 
2. Definitions and notations 
Let k>1 fixed, m, n, i be positive integers and l a non-negative integer. Denote  the set of n-ary functions 

over the set K={0,1,…,k-1}. ={f:K

(n)
KO

(n)
KO n→K}, and OK=∪n>0

(n)
KO . For an arbitrary subset O of the set OK, let 

O(n)=O∩ . Sometimes there are used the short notations (n)
KO x~ = (x1,x2,…,xn) and ( x~ ,xn+1)=(x1,x2,…xn,xn+1). The 

mod k addition is denoted by ⊕. The remainder part of this paper, the function and the set O mean an element 
and a subset of OK, respectively. Some special functions are named and denoted as follows. The defined 
concepts are underlayed. The cyclic permutation function s is the unary function such, that s(x)=x⊕1 for x∈K. 
The n-ary constant functions n

lc , l∈K, and the (n-ary) ith projection function (shortly projection) are defined 

such that for x~ ∈Kn, (n
lc x~ )=l and (n

ie x~ )=xi (1≤i≤n). If n=1, then the upper index is omitted. Therefore, the set 

of constant functions and projections are C and E, respectively, where C(n)={ | l∈K }, En
lc (n)={ | 1≤i≤n }. n

ie
For a non-empty subset M of K, an n-ary function f is M-preserving, if for x~ ∈Mn holds f( x~ )∈M. Denote  
( O | M ) the set of M-preserving functions from O: 
 ( O | M )(n)= { f | f∈O(n), f( x~ )∈M for x~ ∈Mn}. 
A composition of functions f∈  and g∈  is the function g•f∈ , where  (n)

KO (m)
KO 1)-m(n

KO +

(g•f)( x~ ,xn+1, …,xn+m-1)=g(f( x~ ),xn+1,…,xn+m-1) for every xi∈K (i=1,2,…,n+m). 
An (n+1)-ary function h is defined by primitive recursion from n-ary function f and (n+2)-ary function g, if 
h=g$f, where  (g$f)( x~ ,0)=f( x~ ), and  
                    (g$f)( x~ ,s(i))=g( x~ ,(g$f)( x~ ,i),i), s(i)∈K. 



Let r1, jl unary, r2, r two-ary, r3 three-ary and w (k+1)-ary functions given by the following equations. For each 
x,y,z,x1,x2,…,xn∈K valid 

r1(x)=           j
⎩
⎨
⎧

≠
=

0; xif1,-x
0, xif     0,

l(x)=  
⎩
⎨
⎧

≠
=

l; xif     0,
l, xif 1,-k

 

r2(x,y)=     r
⎩
⎨
⎧

≠−
=

0;y if1,y
0,y if       x,

3(x,y,z)=  
⎩
⎨
⎧

≠
=

0;z if y,
0,z if x,

 

r(x,y)=       w(x
⎪⎩

⎪
⎨
⎧

≠≠
=≠

=

0; xand 0y if 1,-x
0, xand 0y if      y,

               0,y if      x,

1,x2,…,xk,l)=xl+1,  l∈K. 

 
Let [ ] be a closure operation over the power-set of the set OK (that is, for all subset O’ of OK: O’⊆[O']; O’’⊆O’ 
implies [O’’]⊆[O'] and [[O’]]=[O’]), and let O be a closed class: [O]=O⊆OK. 
A subset O’ of O is [ ]-complete in the class O, if [O’]=O. 
The [ ]-closed class O’’ is maximal in the class O, if O’’⊂O’⊆O implies [O’]=O. 
The B subset of the class O is a base of the class O, if B is [ ]-complete in O and for every proper subset B’ of B, 
[B’]≠O (that is, B’ is not complete in O). 
The [ ]-closed class is including the set of projections named [ ]-clone. 
We are interesting in two types of clones. One of them is the compositional closed class. A subset O of the set 
OK is said to be a compositional clone, if it contains the projections and it is closed under the functional 
composition: f∈O(n) and g∈O(m) implies g•f∈O(n+m-1). 
A compositional clone O is said to be a pr-clone (primitive recursive clone), if it is closed under the primitive 
recursion: f∈O(n) and g∈O(n+2) implies (g$f)∈O(n+1). 
Denote [O]cl and [O]pr the compositional clone closure and the pr-clone closure of the set O. 
 
Remarks 
1. Several closure operations yield several kind of clones, therefore different theories . 
2.The cyclic primitive recursion yields another, so called cpr-clones. 
 
An (n+1)-ary function h is defined by cyclic primitive recursion from n-ary function f and (n+2)-ary function g, 
if h=g¢f, where (g¢f)( x~ ,s(i))=g( x~ ,(g¢f)( x~ ,i),i), i∈K. 
 
3.The lattice of pr-clones for truth functions (k=2)  
Denote O{0;1} and O2 the set of truth functions (logical functions). To see the effectivity of the pr-closure, we 
present the Post’s lattice (of clones) as Fig.1 and the lattice of pr-closed clones (pr-clones) as Fig.2. The latter 
one is based on the following theorem. 
Theorem 1. 1. The set (O2|{0}) is pr-clone and pr-maximal (in the class O2). 
2. Each {0}-preserving truth function is pr-complete in the class (O2|{0}). 
3. If a truth function is not {0}-preserving, then it is pr-complete (in O2). 
Proof. 
1. It is known [P-41], that (O2|{0}) is a maximal compositional clone (in O2). This clone is closed under 

primitive recursion, because of (g$f)( 0~ ,0)=f( 0~ )=0, for f(O2 |{0}). Therefore this is a pr-clone and so it is 
pr-maximal. 

2. Denote ⊕  and . the mod 2 addition and mod 2 multiplication, resp. 
       Let g2, g3 truth functions be defined by primitive recursion as follows: g2(x,0)=e1(x), g2(x,1)= (x,e3

3e 1(x),0)  

       and g3(x,y,0)= (x,y), g2
1e 3(x,y,1)= (x,y,y,0), that is g4

2e 2(x,y)=x⊕xy and g3(x,y,z)=x⊕xz⊕yz. According to  
       the definition these functions are elements of every pr-clone. It can be seen, that g2(x,x)=c0(x), g3(x,y,x)=xy  
       and g3(x,g2(y,x),y)=x⊕y. It is known [P-41], that the set {x+y,x.y} is a compositional base of the clone  
       ( O2 | {0} ). Due to the statement 1 of the theorem, the set E is pr-complete in the set ( O2 | {0} ), so the sets  
       E∪{g}, g∈(O2 | {0} ) are pr-complete, too. 
3. Due to the proof of part 2, each of the pr-clones contains the pr-clone ( O2 | {0} ), as a subset. 
       As this pr-clone is pr-maximal (statement 1), the statement 3 is true.                                                           � 
 



Corollary 
There are two pr-clones for truth functions; they are the classes O2 and ( O2 | {0} ).                                           � 
The lattices of compositional clones and of pr-clones for truth functions are presented by Fig. 1 and Fig. 2, resp. 
 
4. The maximal pr-clones and the theorem of pr-completeness (case k>2) 
It can be seen (part 3), that for truth functions the pr-closure is more effective than the compositional closure: the 
lattice of the compositional clones is countable [P-41], but the lattice of the pr-clones has only two elements. It is 
known (and easy to see), that arbitrary f∈  has a representation of the form: 1)(n

KO +

           f( x~ ,z)=max(min(jl(z), f( x~ ,l))|l∈K).  
However, a similar representation is the following (standard representation). 
 
Statement. Every (n+1)-variable function f has a representation of the form: 
                       f( x~ ,z)=w(f( x~ ,0),f( x~ ,1),…,f( x~ ,k-1),z).                                                                                       � 
Before presenting our results about pr-Sheffer functions and pr-completeness, we prove a lemma. 
 
Lemma 2. 1. Every pr-clone contains the functions c0, r1, r2, r3, r and w. 
2. c0∈[r1]cl, r1∈[r2]cl, r, w∈[r2,r3]cl. 
Proof. Let the functions f1 and f2 be defined by primitive recursion (over the set E) as follows: 
fj(x,y,0)= (x,y), f2

1e j(x,y,s(i))= (x,y,f4
2je j(x,y,i),i), i=0,1,2,…,k-2 (or a more compact way: fj= $ ). We obtain: 

r

4
2je 2

1e

2(x,y)=f2(x,y,y); r3=f1; r1(x)=r2(x,x); r(x,y)=r3(x,r2(y,x),y). From the following recursive composition u1=r1, 
um+1=u1•um (m≥1) yields the function c0: c0=uk-1. The recursive composition w2=r3, 
wi+1(x1,x2,…,xi,y,z)=w2(x1,wi(x2,…,xi,y,r1(z)), i=2,3,… (not a primitive recursion!) yields the function w; can be 
seen, that w(x1,x2,…,xk,z)=wk+1(x1,x2,…xk,z,z). 
From this construction the statement 2 is obtained.                                                                                                � 
 
Also, the following theorem shows the effectivity of the pr-closure. We mention, that in case of compositional 
closure the Sheffer functions have at least two variables. 
 
Theorem 3. The functions ck-1 and s are pr-Sheffer functions (that is, both of them are pr-complete in OK). 
Proof. Using Lemma 2, every constant function can be generated as follows (similar to the proof of Lemma 2): 
u1=r1, um+1=u1•um, ci=uk-i-1•ck-1; 
v1=s, vm+1=s•vm, ci=vi•c0, i=0,1,…,k-1 (u0=v0=e1). 
The statement is obtained by induction on the number n of variables, because of the standard representation 
f( x~ ,z)=w(f( x~ ,0),f( x~ ,1),…,f( x~ ,k-1),z).                                                                                                                � 
 
Corollary. The class C of constant functions is pr-complete.                                                                             � 
Therefore, considered the set C∪{s} as the set of elementary functions in OK, we obtain that each of the element 
of the set OK is primitive recursive function. 
 
According to the definition of the primitive recursion, (g$f)( 0~ ,0)=f( 0~ ), so the 0-preserving class ( OK | {0} ) is 
a pr-clone for k>2, too. Since this class is maximal in OK as a compositional clone, yields: 
 
Statement. The class of 0-preserving functions is pr-maximal in the class OK.                                                  � 
It is known, that every class ( OK | M ) for (non-empty) M subsets of K is a clone [R-77]. However, these are not 
pr-clones, e.g. r1∈[OK |{1}]pr, but r1(1)=0 by Lemma 2. Let Ki={0,1,…,i} for 0≤i≤k-1 (Kk-1=K). In the next 
theorem the subset-preserving clones are characterized in point of wiev pr-completeness and pr-maximality. 
 
Theorem 4. Let M be a non-empty, proper subset of the set K. Then the clone ( OK | M ) is  
a) maximal pr-clone (in OK) if M=Ki, i=0,1,…,k-2; 
b) pr-complete class (in OK) in other cases. 
Proof. For b∈K\M there exists a function g∈( | M ) such that g(b)=k-1. (1)

KO
a) According to the definition of the primitive recursion, the classes ( OK | Ki ), i=0,1,…,k-2 are pr-clones, 

however they are not pr-completes, since the function ck-1 is not element of them. 
       For any function f∈ \ ( O(n)

KO K | M ) there exists =(aa~ 1,…,an)∈Mn, such that f( )=b∈K\M. So  a~

       ck-1=g(f( ))∈[( O
n1 aa c,...,c K | M )∪{f}]pr since , g∈( O

n1 aa c,...,c K | M ). Therefore, the class ( OK | M )  



       is pr-maximal clone, due to Theorem3. 
b) Suppose,that the set M is different from the sets K0, K1,…,Kk-1, so there exists b+1∈M, such that b∈K\M.  
       Since cb+1∈( OK | M ), so r1(cb+1)=cb∈[( OK | M )]pr, therefore g(cb)=ck-1∈[( OK | M )]pr. Due to Theorem 3, the  
       class ( OK | M ) is pr-complete.                                                                                                                          � 
The next theorem is similar to the completeness theorem of Rosenberg [R-77]. 
 
Theorem 5. (Basic theorem of pr-completeness.) For every integers k≥2, the set O⊆OK is pr-complete (in OK) 
if and only if none of the sets O\ ( OK |Ki), 0≤i≤k-2 are empty. 
Proof. Clearly, the condition is necessary, since the sets ( OK |Ki)are pr-maximal clones for i<k-1, by Theorem 4. 
Sufficient. Suppose, that none of the sets O\ (OK|Ki), 0≤i≤k-2 are empty. So there exists a function g∈O, for 
which g(c0,…,c0)=cj≠c0, therefore cj∈[O]pr, by Lemma 2. If j<k-1, then on a similar way we have get the set 
{g( )|g∈O, {i

n1 ii c,...,c 1,…,in}⊆Kj} having an element cl, l>j. This way we obtain the function ck-1, at most in 

steps k-1. Therefore the class O is pr-complete (Lemma 2 and Theorem 3 is used).                                             � 
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