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1 Introduction

Triangular norms (t-norms for short) play a crucial role in several fields of mathematics and AI. For an exhaustive
overview on t-norms we refer to [20]. Recently an increasing interest of left-continuous t-norm based theories
can be observed (see e.g. [3, 5, 6, 7, 18]). In this paper we discuss in detail the presently existing construction
methods which result in left-continuous triangular norms. The methods are (together with their sources):
- annihilation [12, 2],
- ordinal sum of t-subnorms [11, 9],
- rotation contruction [14, 8],
- rotation-annihilation construction [16],
- embedding method [17, 6].
An infinite number of left-continuous triangular norms can be generated with these constructions (and with
their combinations), which provides a tremendously wide spectrum of choice for e.g. logical and set theoretical
connectives in non-classical logic and in fuzzy theory.

2 Preliminaries

A triangular norm (t-norm for short) is a binary operation T (that is, a function T : [0, 1]2 → [0, 1]) such that
for all x, y, z ∈ [0, 1] the following four axioms (T1)-(T4) are satisfied:

(T1) Symmetry T (x, y) = T (y, x)
(T2) Associativity T (x, T (y, z)) =T (T (x, y), z)
(T3) Monotonicity T (x, y) ≤ T (x, z) whenever y ≤ z
(T4) Boundary condition T (x, 1) = x
(T4′) Boundary condition T (x, 0) = 0
(T4′′) Range condition T (x, y) ≤ min(x, y).

As we will se later, in the construction of left-continuous t-norms an essential role is played by t-subnorms:

Definition 1 ([16]) A triangular subnorm (t-subnorm for short) is a function T : [0, 1]2 → [0, 1] such that
for all x, y, z ∈ [0, 1] axioms (T1), (T2), (T3) and (T4”) are satisfied.

Any t-norm is a t-subnorm. We say that a t-subnorm T has zero divisors if there is x, y ∈]0, 1] such that
T (x, y) = 0. A t-subnorm is said to be continuous resp. left-continuous if it is continuous resp. left-continuous
as a two-place function.

One can define t-subnorms on any [a, b] ⊂ IR and gets the notion of a t-subnorm on [a, b]. Then for any
t-(sub)norm T , the function T[a,b]: [a, b] × [a, b] → [a, b] defined by T[a,b] (a, b) = a + (b − a) · T

(
x−a
b−a , y−a

b−a

)
is

a t-(sub)norm on [a, b]. If T[a,b] is a t-(sub)norm on [a, b] then the function T : [0, 1] × [0, 1] → [0, 1] defined

by T (a, b) = T[a,b](a+x(b−a),a+y(b−a))−a

b−a is a t-(sub)norm. Call T[a,b] the linear transformation of T into [0, 1].
Similarly, call T the linear transformation of T[a,b] into [0, 1].
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Example 1 Non-trivial examples of t-subnorms are e.g. TPε
(x, y) = ε ·x ·y, TLε

(x, y) = max(0, x+y−1−ε),
when ε is a fixed real from [0, 1] (see Figure 2) with the exception of TL0 and TP1 which are just TL, the ÃLuka-
siewicz t-norm and TP, the product t-norm, respectively.

Example 2 We remark that the construction in [10] (Theorem 2) (see as well [20] (Proposition 11) and [19])
produces t-subnorms if the boundary of the resulted t-norm is not redefined (in the formula which can be found
in the cited references). Moreover, if one starts with a left-continuous t-(sub)norm, then the just mentioned
construction (again without the separate definition on the boundary) produces a left-continuous t-subnorm.

A negation ([22]) N is a non-increasing function on [0, 1] with boundary conditions N (0) = 1 and N (1) = 0.
A negation is called strong if N is an involution, that is, if in addition N (N (x)) = x holds for all x ∈ [0, 1].
A negation is strong if and only if its graph is invariant w.r.t. the reflection at the median (given by y = x).
A strong negation is automatically a strictly decreasing, continuous function and hence it has exactly one fixed
point.

Let T : [0, 1]2 → [0, 1] be a function satisfying (T1) and (T3). The implication IT : [0, 1]2 → [0, 1] generated
by T is given by IT (x, y) = sup{t ∈ [0, 1] | T (x, t) ≤ y}. If T is left-continuous then IT is called the residual
implication generated by T .

For a left-continuous t-subnorm T : [0, 1]2 → [0, 1] define NT (x) = IT (x, 0) for x ∈ [0, 1]. If NT is a negation
(this holds e.g. if T satisfies (T4); that is NT is always a negation if T is a t-norm) then NT is called the induced
negation of T .

Let T : [0, 1]2 → [0, 1] be a function satisfying (T3), and let N be a strong negation. We say ([16]) that T
admits the rotation invariance property with respect to N or rotation invariant w.r.t. N if for all x, y, z ∈ [0, 1]
we have T (x, y) ≤ z ⇔ T (y, N (z)) ≤ N (x) .

3 Annihilation

The nilpotent minimum t-norm TM0 is introduced in [4] in such a way that the values of the minimum t-norm
are replaced by 0 under the negation 1− x. More formally, for x, y ∈ [0, 1] let

TM0(x, y) =
{

0 if y ≤ 1− x
min(x, y) otherwise . (1)

It is observed that the same construction works for any strong negation instead of the standard one 1 − x, and
that the costruction doesn’t result in a t-norm (in fact, the associativity property is violated) if the minimum
t-norm is replaced by the product t-norm. Motivated by this observation the concept of N -annihilation (N being
any strong negation) is defined in [12] and a characterization of those continuous t-norms where the annihilated
operator is a t-norm is given as follows:

Let T be a t-norm and N be a strong negation. Define the binary operation T(N) (called the N -annihilation
of T ) as follows:

T(N) : [0, 1]× [0, 1] → [0, 1];

T(N)(x, y) =
{

0 if x ≤ N(y)
T (x, y) otherwise . (2)

Theorem 1 For any strong negation N and continuous t-norm T , T(N) is a t-norm if and only if T(N) is
isomorphic to

TJ(x, y) =





0 if x ≤ 1− y
1
3 + x + y − 1 if x, y ∈ [ 13 , 2

3 ]
and x > 1− y

min(x, y) otherwise

. (3)

In this way a new family of left-continuous t-norms with the additional property of strongness of their induced
negation is introduced. For a visualization, see Fig. 1.

However it was not published in the paper, there is a more “philosophical” reformulation of the results of
[12], which is based on the idea of “level curves”: For any c ∈]0, 1] call the one-place function fc(x) := IT (x, c),
x ∈ [c, 1] the c-level curve of the continuous t-norm T . Because of the continuity of T we can infer T (x, y) = c if
we have fc(x) = y, this explains the name “level curve”. Therefore, the c-level curve is a part (in fact it is the
“upper border”) of the c-level set {(x, y) ∈ [0, 1]2 | T (x, y) = c}. Further, we say that the negation N “cuts” a
c-level curve, if there exist x, y ∈]0, 1] such that fc(x) < N(x) and fc(y) > N(y). In other words, the graph of
the c-level curve is NOT entirely in the upper closed subdomain of [0, 1] which is determined by the graph of N .
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Figure 1: The t-norm which is defined in (3)

By using this terminology, we can reformulate the results of [12] as follows: If any of the c-level curves is cut
by N , then in general T looses its associativity via N -annihilation (that is, T(N) is not associative). The only
exception is if in the “remaining part” of the c-level curve T coincides with the minimum t-norm. More formally,
if a c-level curve is cut by N then we should have T (x, y) = min(x, y) whenever fc(x) = y and x > N(y).

In [2] the authors generalize the results of [12] by considering any left-continuous t-norm T and any negation
N (i.e., not necessarily strong ones). They characterize those left-continuous t-norms T , for which T(N) is a
t-norm. They provide a more detailed description for the case when T is a continuous t-norm: Instead of quoting
this rather formal result we remark that its equivalent formulation is just the above-presented “philosophical”
description (written in italic).

4 Ordinal sums of t-subnorms

It is observed in [11] that the well-known ordinal sum theorem of t-norms can be generalized by using t-subnorms
as summands. We remark that any further generalization (which still results in t-norms or t-subnorms) is not
possible, as it is straightforward to see.

Theorem 2 (Ordinal Sum Theorem for t-subnorms) Suppose that {[ai, bi]}i∈K (ai < bi) is a countable
family of non-overlapping, closed subintervals of [0, 1], denoted by I. With each [ai, bi] ∈ I associate a t-subnorm
Ti where for each [ai, bi], [aj , bj ] ∈ I with bi = aj and with zero divisors in Tj we have that Ti is a t-norm. Let
T be a function defined on [0, 1]2 by

T (x, y) =





am + (bm − am)Tm

(
x−am

bm−am
, y−am

bm−am

)

if (x, y) ∈]am, bm]2,
min(x, y)
otherwise.

(4)

Then T is a t-subnorm and called the ordinal sum of {([ai, bi], Ti)}i∈K and each Ti is called a summand.

Theorem 3 (Generalized Ordinal Sum Theorem for t-norms) Suppose that {[ai, bi]}i∈K (ai < bi) is
a countable family of non-overlapping, closed subintervals of [0, 1], denoted by I. With each [ai, bi] ∈ I associate
a t-subnorm Ti where for each [ai, bi], [aj , bj ] ∈ I with bi = aj and with zero divisors in Tj we have that Ti is a
t-norm and for [ai, 1] ∈ I we have that Ti is a t-norm. Let T be a function defined on [0, 1]2 by (4). Then T is
a t-norm.

Example 3 The ordinal sum {([0, 0.5], TL), ([0.5, 1], TP0.5)} is not a t-norm but a t-subnorm since the ”last”
summand TP0.5 is not a t-norm. The ordinal sum {([0.2, 0.5], TP), ([0.5, 0.8], TL0.5)} is a t-norm. Indeed, since
TL0.5 has zero divisors the only thing we need to verify that the summand which is just below it (that is, TP) is
a t-norm. Figure 2 visualizes the above ordinal sums.
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Figure 2: TP0.5 , TL0.4 , a t-subnorm and a t-norm, which are ordinal sums of t-subnorms, see Examples 1 and 2.

5 Rotation

The rotation method is introduced in [14] and a characterization theorem is given in [8]. As in the ordinal sum
theorem for t-subnorms, we remark, that it is not possible to provide any further generalization of the method
(which still produces t-norms or t-subnorms). The method produces left-continuous (but not continuous) t-norms
which have strong induced negations from any left-continuous t-norm T1 which either has no zero divisors or all
the zero values of its graph are in a sub-square of the unit square (see Fig. 3).

Theorem 4 Let N be a strong negation, t its unique fixed point and T be a left-continuous t-norm. Let
T1 be the linear transformation of T into [t, 1], I+ =]t, 1] and I− = [0, t]. Define TRot and ITRot

(of types
[0, 1]× [0, 1] → [0, 1]) by

TRot (x, y) =





T1(x, y) if x, y ∈ I+

N (IT1 (x, N (y))) if (x, y) ∈ I+ × I−

N (IT1 (y, N (x))) if (x, y) ∈ I− × I+

0 if x, y ∈ I−
, (5)

ITRot (x, y) =





IT1 (x, y) if x, y ∈ I+

N (T1(x, N (y))) if (x, y) ∈ I+ × I−

1 if (x, y) ∈ I− × I+

IT1 (N (y), N (x)) if x, y ∈ I−
(6)

TRot is a left-continuous t-norm if and only if either

C1. T has no zero divisors or

C2. there exists c ∈]0, 1] such that for any zero divisor x of T we have IT (x, 0) = c.

In this case the induced negation of T is N , and the residual implication generated by TRot is ITRot .

0

>0

c

c

0 1

1

0

Figure 3: The zero values of t-norms which are suitable for the rotation construction

Remark 1 If T is a t-subnorm in Theorem 4 then TRot is a left continuous t-subnorm, which is rotation
invariant w.r.t. N and the residual implication generated by TRot is given by (6).

Example 4 In Figure 4 the rotation of the minimum t-norm and the rotation of the product t-norm can
be seen. Observe that the nilpotent minimum t-norm is not else but the rotation of the minimum t-norm. In
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Figure 4: A t-norm with zero divisors, its rotation, rotation of minimum t-norm and rotation of product t-norm

Figure 5 the rotations of certain ordinal sums can be seen. On the right-hand side the ordinal sum has two
summands: the ÃLukasiewicz t-norm and the product t-norm. On the left-hand side the summand is the rotation
of the product.
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Figure 5: Rotations of ordinal sums

6 Rotation-annihilation

The rotation-annihilation method has been introduced in [15]. It produces left-continuous (but not continuous)
t-norms which have strong induced negations from a pair of certain connectives, as it is given in the following
definition. Again, we remark, that it is not possible to provide any further generalization of the method (which
still produces t-norms or t-subnorms).

Definition 2 ([12]) Let N be a strong negation and t be its unique fixed point. Let d ∈]t, 1]. Then Nd :
[0, 1] → [0, 1] defined by Nd (x) = N(x·(d−N(d))+N(d))−N(d)

d−N(d) is a strong negation. Call Nd the zoomed d-negation
of N .

Definition 3 Let N be a strong negation, t its unique fixed point, d ∈]t, 1[ and Nd be the zoomed d-negation
of N . Let T1 be a left-continuous t-subnorm.

i. If T1 has no zero divisors then let T2 be a left-continuous t-subnorm which admits the rotation invariance
property w.r.t. Nd. Further, let I− = [0, N (d) [, I0 = [N (d) , d] and I+ =]d, 1].

ii. If T1 has zero divisors then let T2 be a left-continuous t-norm which admits the rotation invariance property
w.r.t. Nd (it is equivalent to saying that T2 is a left-continuous t-norm with strong induced negation equal
with Nd, see [16]). Further, let I− = [0, N (d)], I0 =]N (d) , d[ and I+ = [d, 1].
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Let T3 be the linear transformation of T1 into [d, 1], T4 be the linear transformation of T2 into [N (d) , d] and
T5 : [N (d) , d]2 → [N (d) , d] be the annihilation of T4 given by

T5 (x, y) =

{
0 if x, y ∈ [N (d) , d] and x ≤ N (y)
T4(x, y) if x, y ∈ [N (d) , d] and x > N (y)

Define TRA : [0, 1]× [0, 1] → [0, 1] by

TRA (x, y) =





T3(x, y) if x, y ∈ I+

N (IT3 (x, N (y))) if x ∈ I+, y ∈ I−

N (IT3 (y, N (x))) if x ∈ I−, y ∈ I+

0 if x, y ∈ I−

T5 (x, y) if x, y ∈ I0

y if x ∈ I+ and y ∈ I0

x if x ∈ I0 and y ∈ I+

0 if x ∈ I− and y ∈ I0

0 if x ∈ I0 and y ∈ I−

(7)

Call TRA the N -d–rotation-annihilation of T1 and T2. If N(x) = 1 − x (the standard negation) then call TRA

simply the d–rotation-annihilation of T1 and T2.

Theorem 5 (Rotation-annihilation) Let N be a strong negation, t its unique fixed point, d ∈]t, 1[ and T1

be a left-continuous t-norm. Take T2, depending on the zero divisors of T1, as it is taken in Definition 3 and let
TRA be the N -d–rotation-annihilation of T1 and T2.

Finally, define ITRA
: [0, 1]× [0, 1] → [0, 1] by

ITRA (x, y) =





IT3 (x, y) if x, y ∈ I+

N (T3(x, N (y))) if x ∈ I+, y ∈ I−

1 if x ∈ I−, y ∈ I+

IT3 (N (y), N (x)) if x, y ∈ I−

IT4 (x, y) if x, y ∈ I0

y if x ∈ I+, y ∈ I0

N (x) if x ∈ I0, y ∈ I−

1 if x ∈ I−, y ∈ I0

1 if x ∈ I0, y ∈ I+

(8)

Then TRA is a left-continuous t-norm, its induced negation is N , it is rotation invariant w.r.t. N , and the
residual implication generated by TRA is given by (8).

Remark 2 If T1 is left-continuous t-subnorm in Theorem 5 then TRA is a left continuous t-subnorm, which
is rotation invariant w.r.t. N and the residual implication generated by TRA is given by (8).

In Figure 6 the rotation-annihilation of T1 and T2 is presented, where T1 is an ordinal sum defined by a ÃLuka-
siewicz t-norm and a product t-norm and T2 is the rotation of the product. In Figure 6 the rotation-annihilation
of T1 and T2 is presented, where T1 is the product t-norm and T2 is TL0.5 , the rotation invariant t-subnorm given
in Section 2.

7 Embedding method

7.1 Completions of left-continuous monoids

Let D = 〈D, ?,≤, 1〉 be a commutative totally ordered integral monoid. We say that ? is a left-continuous
operation on D if whenever X ⊆ D and sup(X) exists in D, then for every y ∈ D one has: y ? sup(X) =
sup{y ? x : x ∈ X}. In this case we speak of left-continuous totally ordered commutative integral monoid. Any
residuated monoid is left-continuous, the converse is not true in general.

Theorem 6 We can embed any countable left-continuous totally and densely ordered commutative integral
monoid D into a left-continuous t-norm.
(i) Clearly D is order isomorphic to Q| ∩ [0, 1]. Let h be any order isomorphism from D onto Q| ∩ [0, 1], and let
◦ be defined on Q| ∩ [0, 1] by x ◦ y = h(h−1(x) ? h−1(y)). Then h preserves the monoidal operation, i.e., it is an
isomorphism from D into 〈Q| ∩ [0, 1], ◦,≤, 1〉, as desired.
(ii) Define for α, β ∈ [0, 1], T4(α, β) = sup{h(d?e) : h(d) ≤ α and h(e) ≤ β}. Then T4 is a left-continuous t-norm
on [0, 1] which extends ◦. Hence h is an embedding of D into 〈[0, 1], T4 ≤, 1〉, and using the density of Q| in IR,
we see that h preserves suprema and infima. This ends the construction.
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Figure 6: t-norms generated by the rotation-annihilation construction

Definition 4 We say that the t-norm T4 defined in the proof of Theorem 6 is the completion of the monoidal
operation ?.

Theorem 7 We can embed any countable, totally ordered, commutative integral monoid into a left-continuous
t-norm.

Indeed, let D be a countable, totally ordered, commutative integral monoid (not necessarily densely ordered
and left-continuous). Then we can embed it into a densely and totally ordered left-continuous commutative
integral monoid M with minimum in the following way:

• If D has no minimum, then add a new element m to be the minimum of the lattice reduct of D and extend
the operation to m in the obvious way (so that it becomes the zero of the multiplication).

• The domain of M is {(m, 1)} ∪ {(a, q) : a ∈ D − {m}, q ∈ Q| ∩ (0, 1]}.
• The order is the lexicographic order.

• The monoidal operation ◦ is defined by (a, q) ◦ (b, r) = min{(a, q), (b, r)} if a ? b = min{a, b}, and (a, q) ◦
(b, r) = (a ? b, 1) otherwise.

That M defined in this way is a commutative linearly and densely ordered integral monoid is proved as in [18].
Left-continuity is due to the fact that if lim

n→∞
(an, qn) = (a, q), then for almost all n, an = a, and lim

n→∞
qn = q. An

application of Theorem 6 ends the construction.

7.2 Embedding finite lexicographical products

Theorem 8 (T〈k〉) Let k ∈ IN and T be any t-norm without zero divisors. Let ⊕i be a commutative, disjunc-
tive `-monoid on IN with zero 0 for 1 ≤ i ≤ k.

1. Let Xk = {1 − ∑k+1
i=1 ni · εi | ni ∈ IN (1 ≤ i ≤ k), nk+1 ∈ IR+, ε > 0 is infinitesimal}. Fix arbitrarily

0 = α0 < α1 < α2 < . . . < αk < αk+1 < 1 and let ai = ϕαi−1(αi) (1 ≤ i ≤ k+1). Define a binary operation
⊕T on IR+ by

r ⊕T s = logak+1

(
T

(
ar

k+1, a
s
k+1

))
,

and a binary operation T on Xk by T
(
(1−∑k+1

i=1 ni · εi), (1−∑k+1
i=1 mi · εi)

)
= 1− (

∑k
i=1(ni⊕i mi) · εi)−

(nk+1 ⊕T mk+1) · εk+1.

Denote φ∅ = id
∣∣
]0,1] , φn1,n2,...,nk

= ϕ−1
a1,n1

◦ ϕ−1
a2,n2

◦ . . . ◦ ϕ−1
ak,nk

define ηk : Xk →]0, 1] by

ηk

(
1−∑k+1

i=1 ni · εi
)

= φn1,n2,...,nk
(ak+1

nk+1) . (9)
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Then ηk is an order-preserving bijection from Xk to ]0, 1]. Finally, define a binary operation T〈k〉 on ]0, 1]
by

T〈k〉(x, y) = ηk

(
T

(
η−1

k (x), η−1
k (y)

))
. (10)

2. For x ∈]0, 1] set nk,0(x) = 0, xk,0 = x. Define recursively

nk,i(x) =
⌊
logai

(xk,i−1)
⌋
,

xk,i = ϕai

(
xk,i−1

a
nk,i(x)
i

)

for 1 ≤ i ≤ k and let nk,k+1(x) = logak+1
(xk,k). Define a binary operation T〈k〉 on ]0, 1] by T〈k〉(x, y) =

φnk,1(x)⊕1nk,1(y),...,nk,k(x)⊕knk,k(y)(a
nk,k+1(x)⊕T nk,k+1(y)
k+1 ).

3. Let T〈0〉 = T . For 1 ≤ i ≤ k define binary operations T〈i〉 on ]0, 1] recursively by (let ī = k + 1 − i,
x̄ = x

a
ni,1(x)

ī

and ȳ = y

a
ni,1(y)

ī

for short) T〈i〉(x, y) =

ϕ−1
aī,ni,1(x)⊕īni,1(y)

(
T〈i−1〉

(
ϕaī

(x̄) , ϕaī
(ȳ)

))
(11)

i. The three definitions for T〈k〉 given in 1, 2 and 3. are equivalent.

ii. T〈k〉 is a t-norm without zero divisors.

iii. T〈k〉 is left-continuous if and only if so does T .

iv. T〈k〉 is strictly increasing if and only if so does T .

v. By using the definition in 3. we have that T〈k〉
∣∣
]α1,1] is order-isomorphic to T〈k−1〉.

Remark 3 If T is a left-continuous t-subnorm, or if 0 is not necessarily zero of ⊕i’s and we suppose 0⊕i0 = 0
only then everything holds true but the boundary condition of the resulted t-norm is violated. Then we obtain
t-subnorms.

Remark 4 As far as we can see Theorem 1 can not be extended so that T is a t-norm with zero divisors
without loosing either the associativity or the left-continuity (that is the residuated nature) of the resulted
structure.

Corollary 1 (T〈⊕〉) Let T be any t-norm without zero divisors, ⊕ be any commutative, disjunctive `-monoid
on IN with zero 0, a ∈]0, 1[, and n(x) = bloga(x)c. The binary operation T〈⊕〉 on ]0, 1] given by T〈⊕〉(x, y) =

an(x)⊕n(y) · (ϕ−1
a (T (ϕa( x

an(x) ), ϕ( y
an(y) )))) = an(x)⊕n(y) · (a + (1 − a) · T (

x

an(x)−a

1−a ,
y

an(y)−a

1−a )) = abloga(x)c⊕bloga(y)c ·
(a + (1− a) · T (

x

abloga(x)c−a

1−a ,
y

abloga(y)c−a

1−a )) is a t-norm with out zero divisors. In addition, T〈⊕〉 is left-continuous
(resp. strictly increasing on ]0, 1]2) if and only if so does T , and T〈⊕〉|]a,1]. is order-isomorphic to T .

Remark 5 It is clear from the recursive description of T〈k〉 (see eq. (11)) that consecutive applications
of Corollary 1 can result in all the t-norms, which can be generated by Theorem 8. Moreover, we see that
T〈⊕k,...,⊕1〉 = (T〈⊕k,...,⊕i+1〉)〈⊕i,...,⊕1〉

7.3 Embedding infinite lexicographical products

In this section we embed commutative, residuated integral `-monoids of ×∞i=1IN into ]0, 1].

Theorem 9 (T〈∞〉) For i ∈ IN let ⊕i be a commutative, disjunctive `-monoid on IN with zero 0.

1. Let X = {1 −∑∞
i=1 ni · εi | ni ∈ IN, i ∈ IN, ε > 0 is infinitesimal}1. Fix arbitrarily 0 = α0 < α1 < α2 <

. . . < αi < . . . < 1 such that lim∞
i=1 αi = 1 and let ai = ϕαi−1(αi) (i ∈ IN).

Define a binary operation T on X by T
(
(1−∑∞

i=1 ni · εi), (1−∑∞
i=1 mi · εi)

)
= 1− (

∑∞
i=1(ni ⊕i mi) · εi).

1Here sum may be understood formally, think e.g. to vectors with countably infinite integer coordinates (n1, n2, . . .) equipped
with the lexicographical order.
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Define Xk, φn1,n2,...,nk
and ηk as in Theorem 8. Let η∞ : X →]0, 1] be given by

η∞(1−
∞∑

i=1

ni · εi) =
∞
lim
k=1

ηk(1−
k+1∑

i=1

ni · εi) (12)

Then η∞ is an order-preserving bijection from X to ]0, 1]. Finally, define a binary operation T〈∞〉 on ]0, 1]
by

T〈∞〉(x, y) = η∞(T
(
η−1
∞ (x), η−1

∞ (y)
)
). (13)

2. For x ∈]0, 1] set n0(x) = 0, x0 = x. Define recursively

ni(x) =
⌊
logai

(xk,i−1)
⌋
,

xi = ϕai
(

xi−1

a
ni(x)
i

)

for i ∈ IN, i > 0. Define φ∞nk
= lim∞

k=1 φn1,n2,...,nk
, and a binary operation T〈∞〉 on ]0, 1] by

T〈∞〉(x, y) = φ∞ni(x)⊕ini(y)(1). (14)

3. Let T be an arbitrary left-continuous t-norm, and define T〈i〉 for i ∈ IN by (11). Let T〈∞〉 be a binary
operation on ]0, 1] given by

T〈∞〉(x, y) =
∞
lim
i=1

T〈i〉(x, y) (15)

i. The three definitions for T〈∞〉 given in 1, 2 and 3. are equivalent.

ii. T〈∞〉 is a strictly increasing, left-continuous t-norm without zero divisors.

iii. If ⊕i = ⊕1 for i ∈ IN, i > 0 then T〈∞〉|]α1,1]. is order-isomorphic to T〈∞〉.

Remark 6 It is clear from (15) that consecutive applications of Corollary 1 together with pointwise limit
can result in all the t-norms, which can be generated by Theorem 9.

Motivated by Theorems 8 and 9 we shall present further examples together with their 3D plots. We will use
the notations introduced until here without making reference to them; but instead of the short notation T〈k〉
sometimes we shall use T〈⊕k,...,⊕1〉.
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Figure 7: 3D plots of (TP)〈+〉 and (TP)〈+,+〉
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Figure 8: 3D plots of (TM)〈+〉 (left) and (Tos)〈+〉 (right)

Example 5 Let TM stands for the minimum operation on [0, 1]. Define an ordinal sum with one ÃLukasiewicz
summand as follows:

Tos(x, y) =





2
9 + 5

9 ·max(0,
x− 2

9
5
9

+ y− 2
9

5
9
− 1)

if x, y ∈ [ 29 , 5
9 ]

min(x, y) otherwise

For the 3D plots of (TM)〈+〉 and (Tos)〈+〉 see Fig. 8.

Example 6 Let the operation ⊕x on IN be given by x ⊕x y = (x − 1) · (y − 1) + 1. The graphs of (TP)〈⊕x〉
and (TP)〈⊕x,⊕x〉 are presented in Fig. 9.
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Figure 9: (TP)〈⊕x〉 and (TP)〈⊕x,⊕x〉

Example 7 For the sake of completeness we remark that the left-continuous t-norm which is introduced by
Smutna [21] (based on the original idea of Budinčevič and Kurilič [1]) can be constructed by Theorem 9.

8 Conclusion

This paper features the presently existing methods that construct left-continuous t-norms. Some of them has the
additional advantage that the induced negation of the resulted t-norm is strong, which may be useful in logical
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Figure 10: (TP)〈+,⊕x〉 and (TP)〈⊕x,+〉

applications. By using these methods (consecutive combination of them is as well possible) an infinite number
of new left-continuous t-norms can be generated. The resulted operations can be admitted into the attention
of researchers of algebra, probabilistic metric spaces, non-classical measures and integrals, non-classical logics,
fuzzy theory and its applications.
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