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Abstract 
This paper presents a new fuzzy clustering algorithm for the clustering and 
visualization of high-dimensional data. The cluster centers are arranged on a grid 
defined on a small dimensional space that can be easily visualized. The 
smoothness of this mapping is achieved by adding a penalization term to the fuzzy 
c-means (FCM) functional. Coding the values of prototypes with interpolated 
black and white colors, regions with different colors evolve on the map and the 
relation between the variables reveal. The proposed approach is applied in the 
analysis of an industrial polyethylene plant. The results show that the proposed 
algorithm is able to detect the relations between the process variables and the 
quality of the manufactured polymer. 

1 Introduction 

Clustering based computational intelligence methods are becoming increasingly 
popular in the pattern recognition community. They are able to learn the mapping 
of functions and systems, and can perform classification from labeled training data 
as well as explore structures and classes in unlabeled data. The visualization of 
high-dimensional data is also important pattern recognition task. Advanced 
visualization tools should be able to convert complex, nonlinear statistical 
relationships between high-dimensional data items into simple geometric 
relationships on a low-dimensional display and compress information while 
preserving the most important topological and metric relationships of the primary 
data items.  



Among the wide range of possible tools, the self-organizing map (SOM) is one of 
the most effective [1]. The Self-Organizing Map as a special clustering tool 
provides a compact representation of the data distribution, has been widely applied 
in the visualization of high-dimensional data. SOM implements an ordered 
mapping of the high-dimensional distribution of the data onto a low-dimensional 
grid. The SOM algorithm can be considered as a generalized version of the hard c-
means clustering algorithm.  

Hard clustering methods are based on classical set theory, and it requires an object 
that either does or does not belong to a cluster. Fuzzy clustering methods operate 
with fuzzy sets allowing the objects to belong several clusters simultaneously with 
different degrees of membership [2]. The data set is thus partitioned into c fuzzy 
subsets. In many real situations, fuzzy clustering is more natural than hard 
clustering, as objects on the boundaries between several classes are not forced to 
fully belong to one of the classes. Recently, several approaches have been worked 
out to increase the performance of SOM by the incorporation of fuzzy logic. In a 
study by Vuorimaa [3], replacing the neurons with fuzzy rules, allowing an 
efficient modeling of continuous valued functions modified the SOM algorithm. 
In [4]  fuzzy clustering combined with SOM is used to project the data to lower 
dimensions. Chen-Kuo Tsao et al. [5] integrate some aspects of the fuzzy c-means 
model into the classical SOM framework. Finally, in [6], a fuzzy self-organizing 
map is presented based on the modifications of the fuzzy c-means functional. In 
this approach, the code vectors are distributed on a regular low-dimensional grid, 
as in SOM and a penalization term is added in order to guarantee a smooth 
distribution for the values of the code vectors on the grid. The idea of the ordering 
of the clusters in a smaller dimensional space can be also found in [7], where the 
fuzzy c-means functional has been modified to detect smooth lines. 

The aim of this paper is to generalize the idea of smoothly distributed fuzzy 
clustering [6] and the Fuzzy curve trace algorithm (FCT) [7] and to apply it to the 
visualization of high-dimensional process data. 

2 Regularized Fuzzy c-means Algorithm 

In this paper the clustering of quantitative data is considered. The data are 
typically observations of some physical phenomenon. Each observation consists of 
n measured variables, grouped into an n-dimensional column vector 

. A set of N observations is denoted by [ ] n
k

T
nkkk zz ℜ∈= zz ,,...,1

{ }Nkk ,...,2,1== zZ  and represented as a Nn× matrix. In the pattern 
recognition terminology, the columns of Z called patterns or objects, the rows are 
called the features or attributes, and Z is called the pattern matrix.  



The objective of clustering is to divide the data set Z into c clusters. A 
matrix Nc× [ ik ]µ=U  represents the fuzzy partitions where ]1,0[=ikµ  denotes 

the degree of the membership of the [ ]Tnkkk zz ,...,1=z -th observation belongs to 
the 1 -th cluster.  ci ≤≤

 

The objective of fuzzy c-means clustering is to minimize the sum of the weighted 
squared distances between the data points, zk and the cluster centers, vi,, where the 
distances  are weighted with the membership values , where   can be 
determined by any appropriate norm, e.g., an A-norm:  
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Usually spherical clusters are applied when A is an identity matrix, A=I. 

Based on the prebious considerations, the objective function of the fuzzy c-means 
algorithm is  
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Where [ ]ikµ=U  is a fuzzy partition matrix of Z, [ ]cvv,vV ,...,21=  is a matrix 
consists of the cluster prototype vectors (centers), and )∞∈ ,1m  is a weighting 
exponent that determines the fuzziness of the resulting clusters and it is often 
chosen as m=2.  

The minimization of the c-means functional (Eq. 2) with respect to the following 
constraints  
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Represents a non-linear optimization problem that can be solved by using a variety 
of available methods [2]. The most popular method, however, is the alternating 
optimization (AO), known as the fuzzy c-means algorithm (FCM-AO): 

The fuzzy c-means clustering algorithm is able to detect groups in the data, but the 
obtained clusters are not ordered which makes the interpretation of the model to 
be difficult. The aim of this paper is to increase the transparency of the result of 
clustering by ordering the cluster centers (prototypes) on an easily visualizable 
low (in this paper two) dimensional space.  

According to this motivation, similarly to SOM, the cluster centers (code vectors) 
are distributed on a two-dimensional lattice, but other topologies can be 



considered. The proposed algorithm performs a topology preserving mapping 
from high, n, dimensional space of z, onto the small, s<n dimensional map, x, of 
the cluster centers such that the relative distances between the data points are 
preserved. The cluster centers of the map are connected to the adjacent cluster 
centers by a neighborhood relation, which dictates the topology of the map. For 
instance, Figure 1. shows a regular square grid, corresponding to c=9 code 
vectors. 
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Figure 1. Example of cluster centers arranged on a two-dimensional grid 

The proposed arrangement of the clusters makes the resulted model interpretable 
only if the smoothness of distribution of the code vectors on the grid of the smaller 
dimensional space is guaranteed. This ordering can be achieved by the 
regularization of the clusters [13]. To achieve such regularization a penalization 
term should be added to the original FCM objective function. 
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where the smoothness is measured as the second-order derivative of the cluster 

centers, ∫ ∂
∂

= x
x
v dS 2

2
 and ϑ >0 is the regularization parameter. 

Since the additional regularization term can be approximated by the second order 
differentiation, this part of the cost function can be written in matrix multiplication 
form: 
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where L is computed as: 
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Where Gi denotes the second order partial difference operator in the direction of 
the , i  variable with some boundary conditions.  At the boundary the 
second order difference doesn’t exist that’s why there are so many zeros in the 
matrices (7).  In case of the model depicted in Figure 1., these matrices are the 
following: 
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For fixed U, the minimum of the cost function with respect to vi i c,...,1= is the 
following system of linear equations:  
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where  denotes the i,j-th element of the L matrix. ijL

Represents a non-linear optimization problem that can be solved by using a variety 
of available methods [2]. The most popular method, however, is the alternating 
optimization (AO), known as the fuzzy c-means algorithm (FCM-AO). Based on 
the previous equations, the algorithm of the modified clustering algorithm is given 
in Table 1. 



Table 1. Regularized fuzzy c-means algorithm  

 

Initialization:  

Given the data set Z, choose the number of clusters c, the weighting exponent m, the 
termination tolerance 0>ε . 

Repeat for  ,...2,1=l

Step 1. Compute the cluster centers: 
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Step 2. Compute the distances: 
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Step 3. Update the partition matrix: 
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The clustering algorithm is sensitive to variations in the numerical ranges of 
different features. Therefore, the clustering was performed based on normalized 
data, where all transformed features have zero mean and unit variance, 
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feature.  



3 Classification of polymer products  

The data comes from a continuous polyethylene manufacturing plant at the TVK. 
Ltd. The data is labeled according to the different product grades of a Phillips 
Petroleum Co. suspension ethylene polymerization process. The polymer particles 
are suspended in an inert hydrocarbon. The catalyst and the inert solvent are 
introduced into the loop reactor where ethylene and an α-olefin (hexene) are 
circulating. The inert solvent (isobuthane) is used to dissipate heat, as the reaction 
is highly exothermic. A cooling jacket is also used to dissipate the heat of the 
polymerization. The main properties of polymer products (Melt Index (MI) and 
density) are controlled by the reactor temperature, monomer, comonomer and 
chain-transfer agent concentration. 

An interesting problem with the process is that it is required to produce different 
product grades according to market demand. Hence, there is a clear need to 
minimize the time of changeover because off-specification product may be 
produced during transition. The difficulty of the problem comes from the fact that 
there are more than ten process variables to consider. Measurements are available 
in every 15 seconds on process variables, which are the reactor temperature (T), 
ethylene concentration in the loop reactor (C2), hexene concentration (C6), the 
ratio of the hexene and ethylene inlet flowrate (C6/C2in), the flowrate of the 
isobuthane solvent (C4), the hydrogen concentration (H2), the density of the slurry 
in the reactor (roz), polymer production intensity (PE), and the flowrate of the 
catalyzator (KAT). The product quality is only determined later, in another 
process. The interval between the product samples is between half and four hours. 
The melt index (MI) and the density of the polymer (ro) are monitored by off-line 
laboratory analysis after drying and extrusion of the polymer that causes one-hour 
time-delay.  

The problem is to reveal the relations between the product quality and the process 
variables. The major aims of monitoring plant performance are the reduction of 
off-specification production, the identification of important process disturbances 
and the early warning of process malfunctions or plant faults. Furthermore, when a 
reliable model is available that is able to estimate the quality of the product, it can 
be inverted to obtain the suitable operating conditions required for achieving the 
target product quality. 

This can be done via clustering the quality and state variables. A set of transition-
free data is used that covers the whole range of specifications of the quality 
properties and the process variables. This data has been extracted from an SQL 
database. As one of the objectives is to infer the values of product quality from 
process data obtained at different operating regions, a set of transition-free data is 
used that covers the whole range of specifications of the quality properties and the 
process variables over all the possible operating regions. The data hold nine 
product grades with the following distribution 



 
Table 2. Sample distribution of products 

Code of product grade Number of  
samples 

1 2 
2 76 
3 5 
4 1 
5 65 
6 94 
7 103 
8 11 
9 52 

 
 

 
Figure 3. Code vectors obtained by the FCM algorithm 

 

First we tried out the basic FCM algorithm. We searched 7x7=49 code vectors. 
The maps of the code vectors coordinates are shown on Figure 3. The values of 
the codebook vectors color-coded. The small values are darker the greater ones 
brighter and interpolated shading applied on the grid. Each cluster is labeled with 
the label that most of the data assigned by the greatest membership value to that 
partition have.  



From this figure the following relations can be detected: 

• The hydrogen concentration and temperature determine the melt index 
(MFI) 

• The hydrogen , C6-C2 concentrations, C6/C2 ratio, temperature have an 
effect on the density of polymer 

• Production intensity is influenced by the flowrate of C4 and catalyst 

 

 
Figure 4. Map of code vectors obtained by random initialized regularized FCM 

It is hard to get the information of the maps shown in Figure 3., because there are 
many scaterred regions with different colors, so we can’t be sure that we get all 
the available information by visual perception. 

The regularized FCM algorithm with random initialization shows better results 
(see Figure 4.). Here we can see the additional information that the C2, C6 
concentration influence the melt index. The relations shown in the maps of Figure 
4. are easier to interpret, because there are only a few regions with different 
colors. 

Last we initialized the code vectors on the main component plane of the data by 
Principal Component Analysis, and applied the regularized FCM algorithm. The 
resulting images (Figure 5.) are more easily interpretable as before, and similar 
products become much more to each other, although additional information didn’t 
revealed. In this figure it can be seen that although there were 9 types of products,  
the regularized FCM algorithm found only the Products 5, 7, 6, 9 in a well-defined 
region on the lattice. It is interesting to analyze why the region of product 2,7 is 
splitted into two regions on the map.  



 

 
Figure 5. Map of cluster prototypes obtained by regularized FCM with initialization 

 

For comparison the maps obtained with Kohonen’s SOM can be seen on Figure 6. 
On this map the color codes are the negatives of ours. On the SOM map the 
quality variables melt index and density are the same functions of process 
variables as on our lattice.  The border of different regions are sharper on The 
SOM map because we used interpolated shading and SOM presents the code 
vectors with cells colored proportional to their magnitude. The results show that 
our mapping is similar to the SOM. The FCM based algorithms found the same 
clusters as Kohonen’s SOM and the same relations reveal. 

 



 
Figure 6. SOM map of the process data 

4 Conclusion 
With the help of clustering we were able to detect hidden relations among the data. 
Although, in high-dimensional problems, it is hard to interpret the results. Hence, it 
is extremely useful to arrange the clusters into a low dimensional grid and visualize 
them. This paper proposed an algorithm for this visualization task. The introduced 
regularization orders similar code vectors closer to each other. The proposed 
approach is applied in the analysis of an industrial polyethylene plant. The results 
show that the proposed algorithm is able to detect the relations between the process 
variables and the quality of the manufactured polymer. 



Acknowledgements 

The authors would like to acknowledge the support of the Co-operative Research 
Center at the University of Veszprem, (VIKKK) (KKK-II-1/A), and founding 
from the Hungarian Ministry of Education (FKFP-0073/2001). Janos Abonyi is 
grateful for the financial support of the Janos Bolyai Research Fellowship of the 
Hungarian Academy of Sciences and OTKA (Hungarian National Research 
Foundation), No. T037600. The support of our industrial partners at TVK Ltd., 
especially Miklós Németh, Lóránt Bálint and Gábor Nagy is gratefully 
acknowledged 

References 

[1] T. Kohonen The Self-Organizing Map, Proceedings of the IEEE, 78(9) (1990), 
1464-1480 

[2] J.C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, 
Plenum, New York, 1981. 

[3] Petri Vuorimaa, Tarko Jukarainen, Esko Kärpänoja, “A Neuro-Fuzzy System 
for Chemical Agent Detection”, IEEE Trans. On Fuzzy Systems, vol 3, no. 4 Nov. 
1995. 

[4] A. Ahalt, A.K. Khrisnamurthy,  P.Chen, D. E. Melton, “Competitive learning 
algorithms for vector quantization,” Neural Networks,  vol3, pp. 277-290, 1990. 

[5] E. Chen-Kuo Tsao, J.C. Bezdek, N.R. Pal, Fuzzy Kohonen clustering 
networks, Pattern Recognition 27 (5), 757-764, 1994 

[6] R.D Pascal-Marqui, A.D. Pascual Montano, K. Kochi, J.M.Carazo,”Smoothly 
distributed fuzzy c-means: a new self organizing map, Pattern Recognition vol.34 
pp. 2395-2402 2001. 

[7] Hong Yan, “Fuzzy Curve-Tracing Algorithm”, IEEE Trans. Syst., Man, 
Cybern. B vol. 31, no.5. pp. 768-773 Oct. 2001. 

[8] Sándor Migály, János Abonyi, Ferenc Szeifert “ Fuzzy Self-Organizing Map 
based Regularized Fuzzy c-means Clustering “ 7th-online World Conference on 
Soft Computing in Industrial Applications 2002,  


