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Abstract: 
In many clustering problems high-dimensional data are involved. Hence, the 
resulting clusters are high-dimensional geometrical objects which are difficult to 
analyze and interpret. Cluster validity measures try to solve this problem, but they 
reduce the information into a single value. As the low dimensional graphical 
representation of the clusters could be much more informative than such a single 
number, this paper proposes a new tool for the visualization of fuzzy clustering 
results. The modified Sammon mapping is based on the basic properties of fuzzy 
clustering algorithms and maps the cluster centers and the data such that the 
distances between the clusters and the data-points will be preserved. 
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1 Introduction 

In our society the amount of data doubles almost every year. Hence, there is an 
urgent need for a new generation of computational techniques and tools to assist 
humans in extracting useful information (knowledge) from the rapidly growing 
volumes of data. Among the wide range of data-mining tools, the clustering-based 
computational intelligence methods are becoming increasingly popular, as they are 
able to learn the mapping of functions and systems, and can perform classification 
from labeled training data as well as explore structures and classes in unlabeled 
data.  

Clustering algorithms always fit the clusters to the data, even if the cluster 
structure is not adequate for the problem. To analyze the adequateness of the 
cluster prototypes, cluster validity measures can be used to evaluate a single 
cluster or the whole partition of the data. However since validity measures reduce 
the overall evaluation to a single number, they cannot avoid a certain loss of 
information. Hence, the impact of visualization of fuzzy clustering results has 
been already realized in [1], when the membership values were simply projected 



into the input variables of the model, and the resulted plots can serve for the same 
purpose as validity measures, but they are more informative than the simple 
numbers produced by validity measures.  

To give more insight into the high-dimensional structures of the fuzzy clusters, in 
this paper we suggest using advanced pattern recognition algorithms developed for 
the visualization of high-dimensional data.  These feature extraction and 
dimensionality reduction algorithms map the original features (variables) into 
fewer features which preserve the main information of the data structure. These 
tools are able to convert complex, nonlinear statistical relationships between the 
high-dimensional data items into simple geometric relationships on a low-
dimensional display and compress information while preserving the most 
important topological and metric relationships of the primary data items. 
Nowadays Multi-dimensional Scaling means any method searching for a low (in 
particular two) dimensional representation of multi-dimensional data sets [2]. 
Sammon’s non-linear mapping is a multi-dimensional scaling method [3]. It is a 
well-known procedure for mapping data from a high-dimensional space onto a 
lower-dimensional space by preserving the inter-pattern distances. This is 
achieved by minimizing an error criterion, called Sammon’s stress, which 
penalizes differences in distances between points in the original space and the 
mapped space.  

Fuzzy c-means cluster analysis has been already combined with this non-linear 
mapping method and successfully applied to map the distribution of pollutants and 
to trace their sources to access potentional environmental hazard on a soil database 
from Austria [4]. As Sammon mapping attempts to preserve the structure of high 
(n)-dimensional data by finding N points in a much lower (q)-dimensional data 
space, such the interpoint distances measured in the q dimensional space 
approximate the corresponding interpoint distances in the n dimensional space, the 
algorithm involves a large number of computations as in every iteration step it 
requires the computation of 2/)1( −⋅ NN  distances. Hence, the application of 
Sammon mapping becomes impractical for large N.  

To avoid this problem in this paper we have modify the algorithm of Sammon 
mapping. By using the basic properties of fuzzy clustering algorithms the 
proposed tool maps the cluster centers and the data such that the distances 
between the clusters and the data-points will be preserved. During the iterative 
mapping process, the algorithm uses the membership values of the data and 
minimizes the objective function of the original clustering algorithm.  

In the following, in Section 2, the general algorithm of fuzzy clustering is 
described. The proposed visualization tool will be described in Section 3. In 
Section 4, the proposed tool is applied to two data sets: classification of wines and 
iris flower types. The results show superior performance over the linear method 
(Principal Component Analysis) and the classical Sammon  projection tools. 



2. Fuzzy Clustering  

2.1 Clustering Algorithm  

The aim of cluster analysis is the classification of objects according to similarities 
among them, and organizing data into groups. A cluster is a group of objects that 
are more similar to other ones than to other clusters. In metric spaces, similarity is 
often defined by means of distance based upon the length from a data vector to 
some prototypical object of the cluster. The prototypes are usually not known 
beforehand, and are sought by the clustering algorithm simultaneously with the 
partitioning of the data. Therefore, clustering techniques are among the 
unsupervised (learning) methods, since they do not use a prior class identifiers. 
The prototypes may be vectors (centers) of the same dimension as the data objects, 
but they can also be defined as “higher-level” geometrical objects, such as linear 
or non-linear subspaces or functions.  

Since clusters can formally be seen as subsets of the data set, one possible 
classification method can be according to whether the subsets are fuzzy or crisp 
(hard). Hard clustering methods are based on classical set theory, and it requires 
an object that either does or does not belong to a cluster. Fuzzy clustering methods 
(FCM) allow objects to belong several clusters simultaneously with different 
degrees of membership [5]. The data set, X, is thus partitioned into c fuzzy 
subsets. In many real situations, fuzzy clustering is more natural than hard 
clustering, as objects on the boundaries between several classes are not forced to 
fully belong to one of the classes. However, they rather are assigned to 
membership degrees between 0 and 1 indicating their partial memberships. 

In this paper, the clustering of quantitative data is considered. The data are 
typically observations of some physical phenomenon. Each observation consists of 
n measured variables, grouped into an n-dimensional column vector 
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In the pattern recognition terminology, the columns of x called patterns or objects, 
the rows are called the features or attributes, and X is called the pattern matrix. 
The objective of clustering is to divide the data set X into c clusters.  

A matrix Nc× [ ik ]µ=U  represents the fuzzy partitions, where c is the number of 
the fuzzy clusters and ikµ denotes the degree of the membership of the -th 
observation belongs to the 

kx
ci ≤≤1 -th cluster.  

The objective of the FCM model [10] is to minimize the sum of the weighted 
squared distances between the data points, and the cluster centers, . The 

distances  are weighted with the membership values 
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where [ ]ikµ=U  is a fuzzy partition matrix of X,  

[ c21 vv,vV ,...,= ]  is a vector of cluster prototypes (centers),  

)∞∈ ,1m  is a weighting exponent that determines the fuzziness of the resulting 
clusters and it is often chosen as m=2. 

),(2 kid can be determined by any appropriate norm, e.g., an A-norm:  
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The minimization of the c-means functional (Eq. 5) represents a non-linear 
optimization problem that can be solved by using a variety of available methods 
[5]. The most popular method, however, is the alternating optimization (AO), 
known as the fuzzy c-means algorithm (FCM-AO). 

Using points, as prototypes in the FCM, result in spherical clusters (corresponding 
to the A-norm). Different cluster shapes can be obtained with different norms as 
suggested in the Gustavson-Kessel algorithm, or with different kinds of 
prototypes, e.g., linear varieties (FCV), where the clusters are linear subspaces of 
the feature space. An r-dimensional linear variety is defined by the vector  and 
the directions s , . In this case, the distance between the data  and 
the ith cluster is: 
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The corresponding fuzzy c-varieties alternating optimization (FCV-AO) brings up 
to determine the centers  in step 1. (see the Appendix), and it computes the 
directions  as the unit eigenvectors of the r largest eigenvalues of the fuzzy 
scatter matrix: 
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If r=1, this results in fuzzy c-lines (FCL) and FCL-AO algorithm. 

The description of the clustering algorithm  is given in Appendix. 

2.2 Validity Measures 

Cluster validity refers to the problem whether a given fuzzy partition fits to the 
data all. The clustering algorithm always tries to find the best fit for a fixed 
number of clusters and the parameterized cluster shapes. However this does not 
mean that even the best fit is meaningful at all. Either the number of clusters might 
be wrong or the cluster shapes might not correspond to the groups in the data, if 
the data can be grouped in a meaningful way at all. Cluster validity measures are 
used to validate a clustering result in general or also in order to determine the 
number of clusters [4]. Let us review two cluster validity measures. The partition 
coefficient (F) is defined in the following: 

N
F

c

i

N

j

m
ij∑∑

= == 1 1

µ

  (9) 

The higher the value of the partition coefficient, the better the clustering result. 
The highest value of F 1 is obtained when the fuzzy partition is actually crisp, i.e. 

. The lowest value 1/c is reached when all data are assigned to all 

clusters with the same membership degree 1/c. This means that fuzzy clustering 
result is considered better when it is more crisp. 

}1,0{∈ijµ

The partition entropy (H) is defined in the following: 
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The smaller the value of the partition entropy, the better the clustering result. This 
means that similar to F crisper fuzzy partitions are considered better. 



3. Sammon Maping based Fuzzy Custer Visualization 

3.1 Intoduction to Sammon Mapping 

Sammon mapping is a feature extraction algorithm that is widely used for pattern 
recognition and exploratory data analysis. This tool is a simple yet very useful 
nonlinear projection algorithm maps the original features (measurements) into 
fewer variables by preserving the inherent structure of the data. While PCA 
attempts to preserve the variance of the data, Sammon’s Mapping tries to preserve 
the interpattern distances. That is to preserve the structure of high (n)-dimensional 
data by finding N points in a much lower (q)-dimensional data space, such the 
interpoint distances measured in the q dimensional space approximate the 
corresponding interpoint distances in the n dimensional space. 
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where  is the Euclidian distance between xi and xj. 
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The Sammon mapping is looking for Y by minimizing the error function E: 
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Minimization of E is an optimization problem in the nq variables yij (i=1,2,..,N; 
j=1,2,...,q). Sammon applied the method of steepest decent to minimizing this 
function. Let  to be the estimate of yi at the tth iteration, )(tyi i∀ . Then  
is given by 
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where α is a nonnegative scalar constant (recommended ), this is 

the step size for gradient search.  
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When the gradient-descent method is applied to search for the minimum of 
Sammon’s stress, a local minimum in the error surface could be reached. 
Therefore a significant number of experiments with different random 
initializations may be necessary. Nevertheless the initialization could be based on 
information which is obtained from the data, such as the first and second norms of 
the feature vectors or the principal axes of the covariance matrix of the data. 

2.2 Modified Sammon Mapping 

A disadvantage of the original Sammon mapping is that when a new data point has 
to be mapped, the whole mapping procedure has to be repeated [6]. It means 
computational load, because in each iteration 2/)1( −⋅ NN  distances as well as 
the error derivatives, must be calculated where N represents the number of data 
points. Hence, the application of Sammon mapping becomes impractical for large 
N. To avoid this problem in this section we have modify the previously presented 
algorithm of Sammon mapping. By using the basic properties of fuzzy clustering 
algorithms where only the distance between the data points and the cluster centers 
are considered to be important, with the modified algorithm only cN ⋅  distances 
are calculated in every iteration, where c represents the number of clusters, so the 
cost function is:   
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In every iteration, after  the adaptation of the projected data points, the projected 
cluster centers are calculated based on the weighted mean formula of the fuzzy 
clustering algorithms: 
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As in the low dimensional space the distances are measured by the Eucledian 

norm, ( ) ( )ik
T

ikkid zyzy −−=),(* , and the dimension of the output map is 
q=2, the result of the original clustering algorithms can be easily analyzed. 

Based on these mapped distances, the membership values of the projected data can 
be also evaluated  
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The quality of the mapping can be easily evaluated based on the mean square error 
of the original and the re-calculated membership values. 

The pseudo-code of the proposed algorithm is given in Table I. 

3. Application Example  

In order to examine the performance of the proposed visualization method two 
examples are presented in this section. The first example is the visualization of the 
results of the clustering of the well known Iris data, while the second one deals 
with the analysis of the Wine data, coming from the UCI Repository of Machine 
Learning Databases (http://www.ics.uci.edu).  These studies are performed to 
evaluate the performance of the proposed method, the e.g., the mean square error 
of the re-calculated membership values *UU − , the difference between the 

original and the re-calculated cluster validity measures (see Eq.(9)), and the 
Sammon stress coefficient (11). For comparison, the data and the cluster centers 
were projected by principal component analysis (PCA) and standard Sammon 
projection. The results are summarized in Table II and III and show that the 
proposed tool has superior performance over the linear method and the classical 
Sammon  projection tools. 



 

 

Table I. The proposed FUZZSAMMVIS algorithm 
Input n,q and { }NkRn
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Figure 1. Projection of the results of the clustering of Iris data 

 

Table II. Results of the mapping of the Iris clustering results 

 *UU −  F F* Sammon  
str. (E) 

PCA 0.0184 0.7052 0.7445 0.0098 

Sammon 0.0128 0.7052 0.7272 0.0063 

FUZZSAMMVIS 0.0030 0.7052 0.7076 0.0105 

 

Table III. Results of the mapping of Wine clustering results 

 *UU −  F F* Sammon  
str. (E) 

PCA 0.1357 0.4761 0.7170 0.1468 

Sammon 0.0622 0.4761 0.5650 0.0647 

FUZZSAMMVIS 0.0427 0.4761 0.5137 0.1007 

 



Conclusions 

By using the basic properties of fuzzy clustering algorithms in this paper a new 
tool has been proposed that maps the cluster centers and the data such that the 
distances between the clusters and the data-points will be preserved. During the 
iterative mapping process, the algorithm uses the membership values of the data 
and minimizes the objective function of the original clustering algorithm. 
Comparing to the original Sammon mapping not only reliable cluster shapes are 
obtained but the numerical complexity of the algorithm is also drastically reduced. 
The proposed tool is applied on different data sets: classification of wines, iris 
flower types. The results show superior performance over the linear method 
(Principal Component Analysis) and the classical Sammon  projection tools. 
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Appendix: Clustering Algorithm 

Initialization: 

Given the data set X, choose the number of clusters c, the weighting exponent m, 
the termination tolerance 0>ε  and initialize the partition matrix randomly. 

Repeat for ,...2,1=l  

Step 1.: Compute the cluster centers: 
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Step 2.: Compute the distances:  22 ),( Aikkid vx −=  

Step 3.: Update the partition matrix: 
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