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Abstract

In 2001 Carlsson and Fullér introduced the possibilistic mean value, vari-
ance and covariance of fuzzy numbers. In 2002 Fullér and Majlender intro-
duced the notations of crisp weighted possibilistic mean value, variance and
covariance of fuzzy numbers, which are consistent with the extension prin-
ciple. In this paper we will show some (normative) properties of possibility
distributions.

1 Probability

In probability theory, the dependency between two random variables can be char-
acterized through their joint probability density function. Namely, if X and Y are
two random variables with probability density functions fX(x) and fY (y), respec-
tively, then the density function, fX,Y (x, y), of their joint random variable (X,Y ),
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should satisfy the following properties∫
R

fX,Y (x, t)dt = fX(x),
∫
R

fX,Y (t, y)dt = fY (y), (1)

for all x, y ∈ R. Furthermore, fX(x) and fY (y) are called the the marginal prob-
ability density functions of random variable (X,Y ). X and Y are said to be inde-
pendent if

fX,Y (x, y) = fX(x)fY (y),

holds for all x, y. The expected value of random variable X is defined as

E(X) =
∫
R

xfX(x)dx,

and if g is a function of X then the expected value of g(X) can be computed as

E(g(X)) =
∫
R

g(x)fX(x)dx.

Furthermore, if h is a function ofX and Y then the expected value of h(X,Y ) can
be computed as

E(h(X,Y )) =
∫
R2

h(x, y)fX,Y (x, y)dxdy.

Especially,

E(X + Y ) =
∫
R2

(x+ y)fX,Y (x, y)dxdy =
∫
R

xfX(x)dx

+
∫
R

yfY (y)dy = E(X) + E(Y ),

that is, the the expected value of X and Y can be determined according to their
individual density functions (that are the marginal probability functions of random
variable (X,Y )).

Let a, b ∈ R ∪ {−∞,∞} with a ≤ b, then the probability that X takes its value
from [a, b] is computed by

P(X ∈ [a, b]) =
∫ b

a
fX(x)dx.

The covariance between two random variables X and Y is defined as

Cov(X,Y ) = E
(
(X − E(X))(Y − E(Y ))

)
= E(XY )− E(X)E(Y )

=
∫
R2

xyfX,Y (x, y)dxdy −
∫
R

xfX(x)dx
∫
R

yfY (y)dy,



and if X and Y are independent then Cov(X,Y ) = 0. The variance of random
variable X is defined as the covariance between X and itself, that is

Var(X) = E(X2)− (E(X))2 =
∫
R

x2fX(x)dx−
(∫

R

xfX(x)dx
)2

.

For any random variables X and Y and real numbers λ and µ the following rela-
tionship holds

Var(λX + µY ) = λ2Var(X) + µ2Var(Y ) + 2λµCov(X,Y ).

2 Possibility

A fuzzy set A in R is said to be a fuzzy number if it is normal, fuzzy convex
and has an upper semi-continuous membership function of bounded support. The
family of all fuzzy numbers will be denoted by F . A γ-level set of a fuzzy set A
in Rm is defined by [A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈
R
m : A(x) > γ} (the closure of the support of A) if γ = 0. If A ∈ F is a fuzzy

number then [A]γ is a convex and compact subset of R for all γ ∈ [0, 1].

Fuzzy numbers can be considered as possibility distributions. Let a, b ∈ R ∪
{−∞,∞} with a ≤ b, then the possibility that A ∈ F takes its value from [a, b] is
defined by [6]

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

A fuzzy set B in Rm is said to be a joint possibility distribution of fuzzy numbers
Ai ∈ F , i = 1, . . . ,m, if it satisfies the relationship

max
xj∈R, j �=i

B(x1, . . . , xm) = Ai(xi), ∀xi ∈ R, i = 1, . . . ,m.

Furthermore, Ai is called the i-th marginal possibility distribution of B, and the
projection of B on the i-th axis is Ai for i = 1, . . . ,m. We emphasise here that
the joint possibility distribution always uniquely defines its marginal distributions
(the shadow of B on the i-th axis is exactly Ai), but not vice versa.

Let B denote a joint possibility distribution of A1, A2 ∈ F . Then B should satisfy
the relationships

max
y

B(x1, y) = A1(x1), max
y

B(y, x2) = A2(x2), ∀x1, x2 ∈ R.

If Ai ∈ F , i = 1, . . . ,m, and B is their joint possibility distribution then the
relationships B(x1, . . . , xm) ≤ min{A1(x1), . . . , Am(xm)} and [B]γ ⊆ [A1]γ ×
· · · × [Am]γ , hold for all x1, . . . , xm ∈ R and γ ∈ [0, 1].



For m = 2 then any γ-level set of [B]γ should be contained by the rectangle
determined by the Cartesian product the γ-level sets of marginal distributions
[A1]γ × [A2]γ , and it should reach each side of that rectangle.

In the following the biggest (in the sense of subsethood of fuzzy sets) joint possi-
bility distribution will play a special role among joint possibility distributions: it
defines the concept of independence of fuzzy numbers.

Definition 2.1. Fuzzy numbers Ai ∈ F , i = 1, . . . ,m, are said to be independent
if their joint possibility distribution, B, is given by

B(x1, . . . , xm) = min{A1(x1), . . . , Am(xm)},

or, equivalently, [B]γ = [A1]γ×· · ·×[Am]γ , for all x1, . . . , xm ∈ R and γ ∈ [0, 1].

Marginal probability distributions are determined from the joint one by the princi-
ple of ’falling integrals’ and marginal possibility distributions are determined from
the joint possibility distribution by the principle of ’falling shadows’.

Let A ∈ F be fuzzy number with [A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1]. A function
f : [0, 1]→ R is said to be a weighting function [4] if f is non-negative, monotone
increasing and satisfies the following normalization condition∫ 1

0
f(γ)dγ = 1. (2)

In [4] the f -weighted possibilistic mean (or expected) value of fuzzy number A
was defined as

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ. (3)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Ef (A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0
[a1(γ) + a2(γ)] γdγ.

That is the f -weighted possibilistic mean value defined by (3) can be considered as
a generalization of possibilistic mean value introduced in [1]. From the definition
of a weighting function it can be seen that f(γ) might be zero for certain (unim-
portant) γ-level sets of A. So by introducing different weighting functions we can
give different (case-dependent) importances to γ-levels sets of fuzzy numbers.

Example 1. Let A = (a, b, α, β) be a fuzzy number of trapezoidal form with peak
[a, b], left-width α > 0 and right-width β > 0, and let f(γ) = (n+ 1)γn, n ≥ 0.
A γ-level of A is computed by

[A]γ = [a− (1− γ)α, b+ (1− γ)β], ∀γ ∈ [0, 1],



then the weighted possibilistic mean values of A are computed by

Ef (A) =
1
2

(
a−

α

n+ 2
+ b+

β

n+ 2

)
=
a+ b

2
+

β − α
2(n+ 2)

.

So,

lim
n→∞

Ef (A) = lim
n→∞

(
a+ b

2
+

β − α
2(n+ 2)

)
=
a+ b

2
.

Let A and B be fuzzy numbers and let f be a weighting function. In [4] the f -
weighted possibilistic variance of A was defined by

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

f(γ)dγ, (4)

and the f -weighted covariance of A and B is defined as

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ. (5)

It should be noted that if f(γ) = 2γ, γ ∈ [0, 1] then

Varf (A) =
∫ 1

0

(
a2(γ)− a1(γ)

2

)2

2γdγ

=
1
2

∫ 1

0
[a2(γ)− a1(γ)]

2 γdγ = Var(A),

and

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ

=
1
2

∫ 1

0
(a2(γ)− a1(γ)) · (b2(γ)− b1(γ)) 2γdγ = Cov(A,B).

Where Var(A) and Cov(A,B) denote the possibilistic variance and covariance
introduced by Carlsson and Fullér in [1]. That is the f -weighted possibilistic vari-
ance and covariance defined by (4) and (5) can be considered as a generalization
of It can easily be verified that the weighted covariance is a symmetrical bilinear
operator.

Example 2. Let A = (a, b, α, β) be a trapezoidal fuzzy number and let f(γ) =
(n+ 1)γn be a weighting function. Then,

Varf (A) = (n+ 1)
∫ 1

0

[
a2(γ)− a1(γ)

2

]2

γndγ

=
[
b− a

2
+

α+ β

2(n+ 2)

]2

+
(n+ 1)(α+ β)2

4(n+ 2)2(n+ 3)
.



So,

lim
n→∞

Varf (A) =
b− a

2
.

The following theorem shows that the variance of linear combinations of fuzzy
numbers can easily be computed (in a similar manner as in probability theory).

Theorem 2.1. [4] Let f be a weighting function, let A and B be fuzzy numbers
and let x and y be real numbers. Then the following properties hold,

Varf (xA+ yB) = x2Varf (A) + y2Varf (B) + 2|x||y|Covf (A,B).

Example 3. Let A = (a, b, α, β) and B = (a′, b′, α′, β′) be fuzzy numbers of
trapezoidal form. Let f(γ) = (n+ 1)γn, n ≥ 0, be a weighting function then the
power-weighted covariance between A and B is computed by

Covf (A,B) =

[
b− a

2
+

α+ β

2(n+ 2)

][
b′ − a′

2
+

α′ + β′

2(n+ 2)

]

+
(n+ 1)(α+ β)(α′ + β′)

4(n+ 2)2(n+ 3)
.

So,

lim
n→∞

Covf (A,B) =
b− a

2
·
b′ − a′

2
.

If a = b and a′ = b′, i.e. we have two triangular fuzzy numbers, then their
covariance becomes

Covf (A,B) =
(α+ β)(α′ + β′)
2(n+ 2)(n+ 3)

.

3 On possibilistic dependencies

The main drawback of definition (5) is that

Covf (A,B) =
∫ 1

0

a2(γ)− a1(γ)
2

·
b2(γ)− b1(γ)

2
f(γ)dγ ≥ 0,

for any pair of fuzzy numbers. However, in probability theory the covariance can
also be negative. To overcome this difficulty we have introduced dependency rela-
tions between γ-level sets of fuzzy numbers via their joint possibility distributions
in [5]. In [2] have shown that the range of correlation coefficient between fuzzy



Figure 1: Independent possibility distributions.

numbers (defined by the help of their joint possibility distribution) is [−1, 1]. Let
us consider three interesting cases. In [5] we proved that if A and B are indepen-
dent, that is, their joint possibility distribution is A × B then ρ(A,B) = 0 (Fig.
1).

Consider now the case depicted in Fig. 2. It can be shown [2] that in this case
ρ(A,B) = 1.

Figure 2: The case of ρ(A,B) = 1.

Consider now the case depicted in Fig. 3. It can be shown [2] that in this case
ρ(A,B) = −1.



Figure 3: The case of ρ(A,B) = −1.
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