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Abstract: In this paper, an efficient algorithm for maximal frequent sequences is 
described with an application in the document clustering processes. First, an 
overview on general document clustering process is given including the different 
feature reduction methods. Next, the role of word sequences and the methods for 
discovering the maximal frequent sequences are presented. In the last part, the 
document clustering based on oncept lattices with sequences is descriped.     

1 Introduction 

The most important purpose of the document or text database is to provide an 
efficient and flexible query system for the non-technical users. The query 
operation usually includes some kind of filtering or selection operation. The 
selection criteria are usually given by a list of keywords and a list of matching 
documents is returned. In the naive query evaluation method every document is 
tested in a sequential way for matching. The documents containing the given 
keywords are inserted into the result list. The main drawback of this evaluation 
method is the low efficiency. Due to the large number of documents this 
processing is very costly and takes a long time. The purpose of the researches is to 
improve the efficiency of the query processing algorithms in text databases.  

One of the most useful methods of cost reduction is the pre-clustering or pre-
classification of the documents. Based on the created cluster index structure, the 
set of tested documents can be reduced drastically. Another benefit of this method 
is that the document cluster hierarchy can be applied directly for query processing. 
The user may navigate in the hierarchy performing an interactive query based on 
relevance feedback. Many proposals have been published in the literature related 
to this topic, but due to the complexity of the semantic based evaluation of the 
documents, the problem of efficient text clustering can not be regarded as a 



closed, finished research area. There are may open questions to be solved in the 
near future. This paper is devoted to present an efficient algorithm for determining 
the frequent word sequences in documents. First, an overview is given about the 
main clustering and classification methods, then the importance of word 
sequences is described. In the next, an algorithm is given for determining the 
frequent word sequences.  

2 Problem area of clustering 

A cluster is a collection of objects that are similar to one other within the cluster 
and are dissimilar to the objects in other clusters. The text clustering is the 
problem of automatically grouping of free text documents. The groups are usually 
described by a set of keywords or phrases that described the common content of 
the documents in the group. In the literature, there are several methods for the 
clustering process. The best known methods are the partitioning, the hierarchical 
and the density-based methods. In the descriptions, the letter N denotes the 
number of objects and M  denotes the number of attributes. 

In the case of partitioning methods, the algorithm constructs K partitions or 
clusters of objects. Each object must belong to only one cluster. The algorithm 
starts with an initial clustering. It then uses an iterative relocation technique to 
improve the partitioning quality. The goodness of clustering is measured by using 
a distance function defined on a pair of objects. The cluster is usually represented 
either by the mean value of the objects (k-means algorithm) or by the object 
located near the centre (k-medoids algorithm). In the initial phase, K objects are 
selected as cluster centres. For each of the remaining objects, an object is assigned 
to the cluster with the minimal distance. After inserting a new element into the 
cluster, the mean value of the cluster is recomputed. The termination criteria is 
usually given by a threshold of total distance value.  

In the case of hierarchical methods, the clusters are generated by a hierarchical 
decomposition of the object set. The bottom-up approach starts with each object 
forming a separate cluster. In the next steps, the clusters close to each other are 
merged into a single cluster in a successive way until a termination condition 
holds.  Taking a top-down approach, the initial cluster includes all of the objects. 
In each successive iteration a cluster is split up into smaller clusters.  

A density-based clustering method grows regions with sufficienct high density 
into clusters and can discover clusters of arbitrary shape. Initially it checks every 
object by counting the number of neighbourhood objects within a given radius. If 
the number of neighbourhood objects exceeds a given threshold the objects is 
insert into the list of cluster core objects. If a core objects lies within the 



neighbourhood of some other cluster the two clusters are merged into a common 
new cluster. 

The common property of these methods is that they have high efficiency only in 
the case of low dimensionality. The main problem of text clustering is that there is 
no natural and efficient feature representation for a large set of different text 
documents. A text document as a complex object may have several hundreds of 
dimensions to describe the content of the document. It is desirable to find a 
reduced description method to increase the processing efficiency in text mining 
tasks. An another problem in text clustering is the representation of the generated 
clusters. The usage of the centre feature vector for representation is not always the 
best solution as a human interpreter would prefer short terms to a long list of 
attributes. It would be better to find a short term for cluster description that 
matches the exact feature centre as close as possible.   

3. Document representation in the clustering process 

To perform a clustering process, the objects should have some kind of attributes to 
measure the distance or similarity among the objects. These attributes are usually 
called as features of the object. Most of the proposals in this field consider the 
document as a set of words. In these representations, each feature corresponds to a 
single word found in the document set. As a document set may contain several 
thousand of words, these results in a very high impracticable dimensionality. To 
reduce the document space dimensionality some word reduction methods are 
applied in the pre-processing phase. The most common method to reduce the 
number of different words is to eliminate the words with low information value. 
These words are called stop words. The stop words are collected into a dictionary 
or a list.  Another way for reduction is based on the statistical properties of the 
words: the infrequent and the frequent words are filtered out from the original text. 
This reduction is based on the assumption that the words with low frequency are 
not a characteristic word for the document set. The weight of a word is measured 
by its frequency. The stemming algorithm is also used in text clustering to remove 
some pre or suffixes from the words in order to determine the common root of the 
words.  

There are two very basic observations about this representation based on words: 
first, the dimension of the feature vector space is very high, and the second, a great 
deal of information is discarded in this way.  

Regarding the first problem, different feature selection methods are available to 
reduce the dimensionality of the feature space. The best known methods for 
dimension reduction are among others the followings: stepwise elimination 



algorithm, decision tree based algorithms, principal component analysis, wavelet 
transformation [9]. 

The second observation is based on the fact that the words alone do not always 
represent the true atomic units of meaning. A straightforward consequence of this 
observation is to use phrases beside the single words in the text clustering process. 
A phrase is a chain of words occurring often in the document. The usage of word 
sequences provides a lot of benefits as it can be easily retrieved computationally 
and on the other hand, also a human-readable description of the document can be 
generated from the representation. 

According to Lewis [7] the phrase-based text representation may work with low 
efficiency due to the following problems: 

- the large set of occurring phrases 

- uneven distribution of the feature vector 

- many redundant features 

- lot of noise in the set of occurring phrases 

Although the usage of phrases is not so efficient as the methods based on single 
word representation, the benefits in the information gain is very important factor 
to go on with the investigation of this problem area. The main difficulty in using 
the phrase-based interpretation is the huge potential increase in the number of 
dimensions. If the number of words is equal to N, the number of phrases 
containing k words is Nk.  To reduce the computational cost it is an important to 
find efficient algorithms for the different phases of the clustering process.  

In the next section, the problem area of finding the frequent word sequences, is 
detailed and an efficient algorithm is represented. To describe the basic concepts, 
some denotations are introduced. Let S be a set of documents and each document 
consists of a sequence of words. 

Definition: If a sequence p is a subsequence of q and the number of elements in p 
is equal to n, then the p is called an n-gram in q.  

Definition: A sequence p =a1..ak is a subsequence  of a sequence q if all the items 
ai occur in q and they occur in the same order as in p. If a sequence p is a 
subsequence of a sequence q we say that p occurs in q. 

Definition: A sequence p is frequent in S if p is a subsequence of at least α 
documents in S where α is a given frequency threshold. 

Only one occurrence of sequence in the document is counted. Several occurrences 
within one document do not make the sequence more frequent.  

Definition: A sequence p is a maximal frequent sequence in S if there does not 
exists any sequence p’ in S such that p is a subsequence of p’ and p’ is frequent in 
S. 



One reason to extract maximal sequences, instead of fixed size frequent 
sequences, is that maximal sequences are both flexible and compact 
representation. Maximal sequences are flexible, since gaps are allowed in the 
sequences between words, which is important due to the many variations in the 
real texts. Maximal sequences also reduce overlapping information in the 
representation. Maximal frequent sequences can be used as content descriptor for 
documents. In this way, a document is represented by a set of sequences. This set 
can be used to discover other regularities in the document collection. As the 
sequences are frequent, their combination of words is not accidental and a phrase 
has a form that is present in many documents, giving a possibility to do similarity 
mappings for information retrieval or clustering.  

In the literature, very few papers have been presented so far dealing with the 
problem of efficient algorithm for generating maximal frequent sequences. 
Related research includes discovery of frequent sets [1] and discovery of 
sequential pattern. In the context of textual data, a frequent set consists of words 
that co-occur frequently in documents where the order of words and the number of 
relative occurrences is not significant. So one word may occurs then times and the 
other one only once within the same word set. In some approaches [2], not only 
the list of maximal frequent sequences are discovered but the frequent set of 
frequent maximal sequences. This new level of data structure enables to determine 
the co-relation between the sequences. Using a co-relation matrix, the different 
frequent sequences may be clustered to better describe the semantic equivalence 
among the word sequences.  

 Most of the related approaches use a bottom-up processing. First, the frequent 
words are discovered, then the longer frequent sequences are iteratively formed 
from the shorter ones. In each iteration step, the usual why is to generate an initial 
set of candidate frequent sequences from the result set of the previous step. Next, 
all of the candidates are tested whether they are frequent or not. The problem with 
this approach is, that the number of possible candidate sequences may be very 
huge as the length of sequences increases. In this case, both the candidate 
generation as the candidate testing will be a very time consuming process.  

In our proposal, the candidate sequences will be generated using an algorithm 
where the number of candidates remains limited, and the total cost of maximal 
frequent sequence discovery is also low. 

4. Algorithm for the FMFS problem 

During the development of the new algorithm, our intent was to find a low-cost 
method with a simple data structure. As the concatenation of two appropriate n-
grams is the simplest way to find a candidate for frequent (n+1)-grams, this way 



of candidate generation was selected. The rule for concatenation can be given in 
the following way:  

If a1..an is a frequent n-gram on positions p1…pn and b1..bn is another frequent n-
gram on positions q1…qn where a2=b1,a3=b2,..,an=bn-1 and p2=q1,p3=q2,..,pn=qn-1 
then a1..anbn is a candidate for frequent n-gram on position p1..pnqn.  

Using this principle for frequent n-gram generation, the corresponding data 
structure should store both the elements of the frequent n-grams as the positions of 
the n-grams. The simplest structure for this purpose is a list containing the 
frequent  n-grams and their positions ordered by the starting position. Based on 
this list structure, the algorithm processes the sequences in a simple sequential 
way and candidates for frequent (n+1)-sequences are detected according to the 
given concatenation rule. For every document a list of candidate frequent (n+1)-
grams is generated. In the next phase this list is scanned to determine the actual 
frequency value for every candidate. The candidates with a lower frequency value 
than a given threshold are removed from the candidate list.  

Using this simple algorithm, the resulting algorithm does not provide yet the 
desired efficiency improvement. The reason for the high cost is that the number of 
candidate n-grams remained at a high level. To achieve a better efficiency the 
number of candidates should be reduced in additional processing steps. In our 
proposal, this reduction is based on the following elements: 

1. The algorithm starts unlike to other systems not with the discovery of 
frequent 2-grams but with the generation of frequent 1-grams. This 
modification is based on the experience that most of the words are not 
frequent.  

2. In each phases of the frequent n-gram generation some candidates may be 
eliminated if they are redundant candidates. A candidate is called redundant if 
all of the frequent grams of the next level can be generated from the reduced 
candidate set without the redundant candidates.   

The detection of a redundant candidate is performed on the following way for the 
case of 2-grams. If a1 = (a11,a12), a2 = (a21,a22), a3 = (a31,a32) are all frequent and 
a11 = a31, a12 = a21, a22=a32 and a11 = a31, a12 = a21, a22=a32 and a = (a11,a21,a22) is 
also frequent at this position then (a31,a32) is a redundant 2-gram and so it can be 
eliminated from the candidate list. 

According to this candidate elimination rule every frequent n-gram will be 
represented with a list of 2-grams. This list contains (n-1) 2-grams which are 
chained together: 

 (a1,a2), (a2,a3), (a2,a3),…, (an-1,an) 

The end-point of any 2-gram is equal to the start-point of the next 2-gram. In 
general, the 2-grams that is a subset of union of some other 2-grams, are redundant 
2-grams. 



At the end of phase for the n-level, every n-grams that are not contained in any 
frequent (n+1)-gram is a maximal frequent n-gram and are inserted in the result 
list. 

The simplified algorithm for discovering the maximal frequent sequences consists 
of the following steps: 

1. Preparation phase 

1.1 Converting every document into a list of words with positions 

1.2 Reducing the set of words with the following methods: 

 Stop word elimination using a stop word dictionary 

 Determining the frequency of the words 

 Removing the words having too low frequency 

 The words are replaced by a numeric code 

 Building a word and code dictionary 

1.3 Saving the reduced decoded list of words into a temporary file 

2. Discovery phase 

2.1 Discovering the set of frequent 2-grams 

 Creating a test window for scanning the temporary file 

 For every position of the window generating the 2-grams 

 Inserting the 2-gram candidates with the starting position 
into an intermediate list 

 Counting the frequency of the candidates in a separate loop 

 Saving the frequent 2-grams into a temporary file 

2.2 Discovering the set of frequent n-grams 

 For every level in increasing order 

 Scanning the condensed document list with the test window  

 For every position of the window generating the (n+1)-
grams 

 Inserting the n-gram candidates with the starting position 
into an intermediate list 

 Counting the frequency of the candidates in a separate loop 

 Saving the frequent (n+1)-grams into a temporary file 

 Saving the not contained n-grams into the result set 



 Validating the result set 

The new elements of this algorithm can be summarised as follows. First, the 
filtering of frequent n-grams starts at level 1 and not at level 2 . Second, the 
generation of new candidates is performed on an efficient way to reduce the 
number of redundant candidate tests. 

5. Implementation experiments 

Although the algorithm allows sequences of any length, to make the discovery 
more efficient, we restricted the maximal distance of two consecutive items in the 
in a sequence. The maximal gap used in the tests is set to 2, i.e. if there are more 
than 2 words between two words in the document, they can  not be used as 
neighbouring words in a sequence. This principle reduces the amount of pairs in 
the initial phase, which would otherwise need a lot of space and time.  

The major data structures used in the implementation include a 

- hash table that stores  candidate n-grams with the exact occurrence 
positions 

- hash table that stores the n-grams and the frequency values 

- array (file) of candidate n-grams ordered by its position 

- array (file) of maximal frequent n-grams  

We have implemented the maximal sequence discovery algorithm in Perl. For 
experiments we have used a document set of moderate size. The number of 
documents was less than 500.  In the next phase, the algorithm will be tested on 
the Reuters-21578 new collection which contains about 19000 documents. The 
average length of the documents is about 150 words.  

During the tests, the algorithm was compared with an earlier program version for 
the maximal frequent sequence discovery. According to the test results, the 
modified algorithm can discover the required set of maximal frequent sequences 
and it provides an increased efficiency for smaller sets of documents. A more 
completed comparison can be given only after the tests with the Reuters data 
collection. 

The discovery of frequent word sequences may be used as an important module in 
a larger document management system. The result of this module can be used 
among others for clustering purposes. Using phrases instead of single words, the 
users can better understand the semantic of the generated clusters.  

The extraction of maximal frequent word sequences is a first step for further 
investigations to provide a better and semantic-full description of the documents 



and of the document clusters. Among the possible research directions we can 
mention the involving grammar analysis of the frequent word sequences. In [3], 
we can find an approach to address this problem. It aims at discovering patterns 
which preserve as many features as possible such that the frequency of pattern still 
exceeds the frequency threshold given.      

A common type of language analysis is to create a concordance for some word, 
i.e., to list all the sequences with the occurrences of the given word. This 
collection can provide useful information to gather some generalised knowledge 
about the use of the word. Based on this collection, the co-occurrences of some 
group of words can be discovered. These groups can be considered as clusters in 
the topic area.  

6. Application of FMFS Algorithm in Document 
Clustering based on Concept Lattices 

Concept lattices are used in many application areas to represent conceptual 
hierarchies stored in a hidden form in the underlying data. The field of Formal 
Concept Analysis [6] introduced in the early 80ies has grown to a powerful theory 
for data analysis, information retrieval and knowledge discovery.  

The building of concept lattice consists of two usually distinct phases. In the first 
phase the set of concepts is generated. The lattice is built in the second phase from 
the generated set. We can find proposals in the literature for both variants, i.e. 
there are proposals addressing only one of the two phases and there are methods 
for combining these phases into a single algorithm. Based on the analysis of these 
methods, the cost for both steps is about the same order of magnitude and the 
asymptotic cost depends on mainly three parameters: the number of objects, the 
number of attributes and the number of concepts. The cost is always larger than 
the product of these parameters. The concept-set generation algorithms have two 
main variants. The methods of the first group work in batch mode, assuming that 
every element of the context table is already present. The most widely known 
member of this group is the Ganter’s next closure method. The other group of 
proposals uses an incremental building mode. In this case, the concept set is 
updated with new elements if the context is extended with a new object. The 
Godin’s method belongs to this group.  Regarding the phase for building the 
lattice, the proposed approaches are based on the considerations that the lattice 
should be built up in a top-down (or bottom-up) manner because in this case only 
the elements of the upper (or lower) neighbourhood are to be localised. The 
second usual optimisation step is to reduce the set of lattice element tested during 
the localisation of the nearest upper or lower neighbour elements.  

 



In the document clustering process based on concept lattices, the documents are 
considered as the objects[5]. The context is built up usually from the attributes of 
the documents. The words and the sequences stored in a document are taken as 
attributes of a document, so   

G = {d1,..,dN} 
M = {w1,..,wM} 

Based on this interpretation, the context matrix can be built up on a simple way 
and the generation of the concept set and of the concept lattice can be performed 
using the methods presented in [5]. The only and large problem is the fact that the 
number of documents and the number of possible words and sequences is very 
huge. So the simple direct method can not be implemented within an acceptable 
execution cost value. This is the reason that an optimization step must be 
integrated into the basic algorithm. Analyzing the cost calculations, it is clear that 
the main cost factor is the number of the attributes M. The goal is to minimize the 
M value.  

One of the simplest way to reduce the set of words used to describe the documents 
is to filter out the words based on a relevance value. As the result, only the words 
with higher importance remain in the documents. The relevance factor of a word 
emphases the words and sequences which occur only in few documents and the 
number of occurrences within a document is relative large. The relevance value 
can be given by: 

Fij = cij * log(N/Nj) 

where cij is the frequency of wj in the document di. The symbol Nj denotes the 
number of documents containing the word wj. Using this importance factor, only 
those words remain in the context which occur only in few documents. From the 
viewpoint of clustering, this is not always a desirable effect, as the different 
documents may contain different words and so there are no words occurring in 
several documents. The common words are needed to find out which documents 
belong to the same group, cluster. So it is useful to modify the original relevance 
factor by giving extra bonus points to the words common in a given number of 
documents. The optimal value of documents depends on the number of desired 
clusters. This value is an input parameter in our algorithm. An another performed 
modification is that instead of several local relevance value a global relevance 
value is calculated. Thus the applied importance factor is equal to 

Fj = Σicij * log(N/(1+(m-Nj)) 

where m denotes the optimal number of clusters. Using this relevance value, the 
words and sequences contained in the document set can be ordered. After the 
filtering, only the words having the largest factor remain in the documents. 

The concepts of the resulting concept lattice represent the sets of documents 
having common attributes. The number of nodes in the lattice is usually too large 



to be presented it in whole to the users. It is reasonable to reduce the number of 
concepts to be used in the clustering process. The reduction is performed in the 
following way. If there are N objects in the context and the number of desired 
clusters is also N, then every object represents a cluster.  On the other hand, if the 
number of desired clusters is smaller than the number of objects then more than 
one object will be mapped to the same cluster. In our proposal, the generated 
concepts are used as cluster centers. The objects are mapped to the closest concept 
from the selected ones. The distance between two attribute sets is defined as 

d(c1,c2) = | {a | (c1Ia ∧ ¬c2Ia)∨  

                     (¬c1Ia ∧ c2Ia)} | 

For a given K value, we can generate the set of concepts for which 

Σi,jd(oi,cj) ⇒ min, cj ∈ S , |S| = K 

holds and i denotes the document index, oi the attribute set of the document, ci is a 
concept from the set of cluster concepts S. The S set can be generated on different 
way, for example by using a gradient method. This method provides an 
approximate solution in an efficient way. 

Based on the resulting clustering concept lattice, the query can be performed using 
a relevancy feedback method. This process can be divided into the following 
steps: 

- providing the initial set of attributes user is interested in 

- locating the cluster concept closest to the input attribute set 

- returning the description of the selected cluster concept and the 
neighborhood of this concept 

- the user responses determining which direction should be selected to 
refine the query 

The structure of the proposed system is given in the Fig. 1. 
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Fig. 1, Structure of Document Clustering System 
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The testing of the proposed query system is in progress. We have performed tests 
only with document set of smaller size until now. The program modules are 
implemented in Perl. 
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