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Abstract

When performing set-theoretical operations, such as intersection and union, on
fuzzy sets, one can opt not to consider exact formula, but to leave the results
less specific (in particular, interval-valued) by using both disjunctive and con-
junctive representations (normal forms) of the underlying logical operations.
We investigate which De Morgan triplets are suitable for this transformation
(i.e. really yield intervals) and reveal the importance and unique role of the
ÃLukasiewicz-triplet in the theory of fuzzy normal forms. To conclude we ex-
tend binary fuzzy normal forms to higher dimensions.
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1 Introduction

In many cases, crisp models are too ‘poor’ to represent the ‘human way of thinking’.
Fuzzy sets provide a widely accepted solution to that end. Typical to fuzzy set theory is
the large set of options (logical operations, shapes of membership functions, parameters)
that are available to the user. A unique and definite definition of the intersection of two
fuzzy sets, for instance, cannot be expected. Because of this and other reasons, Türkşen
proposes to leave the result of such logical operations unspecified, to some extent, by
drawing upon the theory of fuzzy normal forms. In this way, he created interval-valued
fuzzy sets [6]. But is this way of generating interval-valued fuzzy sets meaningful?
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In Section 2, the generalization from Boolean to fuzzy normal forms is briefly recalled.
Some results of Bilgiç [2] are disclaimed and some new properties concerning the rela-
tionship between the fuzzy normal forms are stated. In Section 3, we investigate which
De Morgan triplet is the most appropriate to construct interval-valued fuzzy sets and
give a new characterisation of the L-triplet. So far we dealt with binary fuzzy normal
forms only. Section 4 extends this notion to higher dimensions. We give some examples
and characterisations of De Morgan triplets for which the difference between the fuzzy
normal forms is independent of the Boolean function. A summary and some suggestions
of further research are given in Section 5.

Before we start our study, we first fix some notations concerning De Morgan triplets. For
a t-norm T , a t-conorm S and two negators N1 and N2 the two laws of De Morgan are
given by

N1(S(x, y)) = T (N1(x), N1(y)) , (1)

N2(T (x, y)) = S(N2(x), N2(y)) . (2)

We say that 〈T, S,N〉 is a De Morgan triplet if N is a strict negation and (1) is satisfied
with N1 = N . Let φ be an automorphism of the unit interval and N be the standard
negator, then the triplets1 〈(TM)φ , (SM)φ , Nφ〉, 〈(TP)φ , (SP)φ , Nφ〉, 〈(TL)φ , (SL)φ , Nφ〉,

〈(TD)φ , (SD)φ , Nφ〉 and 〈(T
nM)φ, (S

nM)φ, Nφ〉
2 will be called respectively (M, φ)-, (P, φ)-,

(L, φ)-, (D, φ)- and (nM, φ)-triplets. In case φ is the identity mapping, we talk about the
M-, P-, L-, D- and nM-triplet.

Table 1: Boolean normal forms
No DB = CB

1 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) = 1
2 0 = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′)
3 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y) = x ∨ y

4 x′ ∧ y′ = (x ∨ y′) ∧ (x′ ∨ y) ∧ (x′ ∨ y′)
5 (x′ ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) = x′ ∧ y′

6 x ∧ y = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y)
7 (x ∧ y) ∨ (x′ ∧ y) ∨ (x′ ∧ y′) = x′ ∨ y

8 x ∧ y′ = (x ∨ y) ∧ (x ∨ y′) ∧ (x′ ∨ y′)
9 (x ∧ y) ∨ (x ∧ y′) ∨ (x′ ∧ y′) = x ∨ y′

10 x′ ∧ y = (x ∨ y) ∧ (x′ ∨ y) ∧ (x′ ∨ y′)
11 (x ∧ y) ∨ (x′ ∧ y′) = (x ∨ y′) ∧ (x′ ∨ y)
12 (x ∧ y′) ∨ (x′ ∧ y) = (x ∨ y) ∧ (x′ ∨ y′)
13 (x ∧ y) ∨ (x ∧ y′) = (x ∨ y) ∧ (x ∨ y′)
14 (x′ ∧ y) ∨ (x′ ∧ y′) = (x′ ∨ y) ∧ (x′ ∨ y′)
15 (x ∧ y) ∨ (x′ ∧ y) = (x ∨ y) ∧ (x′ ∨ y)
16 (x ∧ y′) ∨ (x′ ∧ y′) = (x ∨ y′) ∧ (x′ ∨ y′)

1Note: we use notations from [4]
2By T nM we mean the nilpotent minimum introduced by Fodor [3].
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2 Fuzzy normal forms of binary Boolean functions

In a Boolean algebra every function can be represented by its disjunctive (DB) and con-
junctive (CB) normal form. Although they are identical, both forms are computed in a
different way.

Consider the Boolean algebra B({0, 1},∨,∧,′ ). The disjunctive and conjunctive normal
forms of an n-ary Boolean function f are given by

DB(f)(x1, ..., xn) =
∨

f(e1,...,en)=1

xe11 ∧ ... ∧ x
en

n (3)

and
CB(f)(x1, ..., xn) =

∧

f(e1,...,en)=0

x
e′
1

1 ∨ ... ∨ x
e′n
n , (4)

where xe = x if e = 1 and xe = x′ if e = 0.
When working with two variables only, the Boolean normal forms for the sixteen Boolean
functions are given in Table 1.

We can fuzzify these definitions by replacing (∧,∨,′ ) by a triplet (T, S,N). The corres-
ponding disjunctive and conjunctive normal forms are denoted by DF and CF .

Table 2: Disjunctive and Conjunctive fuzzy normal forms

No DF CF

1 S[T (x, y), T (x, yN ), T (xN , y), T (xN , yN)] 1
2 0 T [S(x, y), S(x, yN ), S(xN , y), S(xN , yN)]
3 S[T (x, y), T (x, yN ), T (xN , y)] S(x, y)
4 T (xN , yN) T [S(x, yN), S(xN , y), S(xN , yN)]
5 S[T (x, yN), T (xN , y), T (xN , yN)] S(xN , yN)
6 T (x, y) T [S(x, y), S(x, yN ), S(xN , y)]
7 S[T (x, y), T (xN , y), T (xN , yN)] S(xN , y)
8 T (x, yN) T [S(x, y), S(x, yN ), S(xN , yN)]
9 S[T (x, y), T (x, yN ), T (xN , yN)] S(x, yN)
10 T (xN , y) T [S(x, y), S(xN , y), S(xN , yN)]
11 S[T (x, y), T (xN , yN )] T [S(x, yN), S(xN , y)]
12 S[T (x, yN), T (xN , y)] T [S(x, y), S(xN , yN)]
13 S[T (x, y), T (x, yN )] T [S(x, y), S(x, yN )]
14 S[T (xN , y), T (xN , yN)] T [S(xN , y), S(xN , yN)]
15 S[T (x, y), T (xN , y)] T [S(x, y), S(xN , y)]
16 S[T (x, yN), T (xN , yN)] T [S(x, yN), S(xN , yN)]

The main point of study so far has been the relationship between DF and CF . The
following claims can be found in [2]:

1. If (T, S,N) is a triplet such that T is a t-norm, S is a t-conorm and N is a negator,
then DF (.) cannot be equal to CF (.).
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2. Consider a De Morgan triplet 〈T, S,N〉, with involutive negator N . If one of the
following inequalities

S[T (x, y), T (x, yN )] ≤ x , (5)

S[T (x, y), T (xN , y)] ≤ x , (6)

S[T (x, xN ), T (xN , y)] ≤ x , (7)

holds for all (x, y) ∈ [0, 1]2, then

S[T (x, y), T (x, yN ), T (xN , y)] ≤ S(x, y) , (8)

S[T (x, y), T (xN , yN)] ≤ T [S(x, yN), S(xN , y)] , (9)

S[T (x, y), T (x, yN )] ≤ T [S(x, y), S(x, yN )] , (10)

are satisfied for all (x, y) ∈ [0, 1]2.

3. If in a De Morgan triplet 〈T, S,N〉, T and S are continuous and N is an involutive
negator, then DF ≤ CF for the sixteen Boolean functions.

Note that, when using an involutive negator N and a De Morgan triplet 〈T, S,N〉, the
three inequalities (8)–(10) are equivalent to DF ≤ CF .

Unfortunately in the last two claims above the author jumped into conclusions.

1. It is obvious that in the crisp case inequalities (6) and (7) are not true. In the fuzzy
case, it indeeds hold that

(5) =⇒ (8), (9), (10).

For every (M, φ)-, (P, φ)-, (L, φ)- and (D, φ)-triplet inequality (5) holds. Conse-
quently DF ≤ CF , when working with these particular De Morgan triplets. One
easily verifies that for a (nM, φ)-triplet (8)–(10) hold, although (5) is false.

2. Consider the ordinal sum

T ≈
(〈

0,
1

3
, TP

〉

,

〈

1

3
, 1, TL

〉)

.

Let N be the standard negator, then 〈T, S,N〉 fulfils the conditions of the third
claim. However, as shown in Figure 1, there exists (x, y) ∈ [0, 1]2 and a Boolean
function f (the logical equivalence) such that

CF (f)(x, y) < DF (f)(x, y).

C. and E. Walker have even shown [7, 8] that DF ≤ CF does not hold for every
nilpotent or every strict De Morgan triplet.
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Figure 1: CF −DF for row 11 of Table 2

Let us now focus on inequalities (8)–(10). The question arises whether some of these
inequalities can be turned into equalities.

Proposition 1 For any De Morgan triplet 〈T, S,N〉, the equality

S[T (x, y), T (x, yN ), T (xN , y)] = S(x, y)

cannot hold for all (x, y) ∈ [0, 1]2.

Proposition 2 Let N be a negator that has a fixpoint, T an arbitrary t-norm and S an

arbitrary t-conorm. Then the equality

S[T (x, y), T (x, yN )] = T [S(x, y), S(x, yN )]

cannot hold for all (x, y) ∈ [0, 1]2.

Proposition 3 Let N be a negator with fixpoint a, T a t-norm and S a t-conorm such

that for all x ∈ [0, a]:
{

T (x, a) = min(x, a) ,
S(x, a) = max(x, a) .

Then the equality

S[T (x, y), T (xN , yN)] = T [S(x, yN), S(xN , y)]

holds for all (x, y) ∈ [0, 1]2.

Note that these three propositions imply that, for a continuous De Morgan triplet, equality
for all (x, y) ∈ [0, 1]2 cannot occur in (8) and (10). Moreover, if the unique fixpoint a of
the negator is an idempotent element of T , then equality in (9) holds for all (x, y) ∈ [0, 1]2.
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3 Interval-valued fuzzy sets

If a fuzzy set is constructed from other fuzzy sets by means of logical connectives for
which DF ≤ CF , Türkşen [6] proposes to create an interval-valued fuzzy set (IV FS)

IV FS(.) = [DF (.), CF (.)]

in order to model uncertainty concerning the exact membership degrees. We now would
like to know whether this replacement is meaningful.

0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1 A(x)
B(x)

Figure 2: Fuzzy sets A and B on [0, 3
2
]

Consider the fuzzy sets A and B in Figure 2. The IV FS of the intersection of both fuzzy
sets is given by

IV FS(A ∩B)(x) =

[DF (∧)(A(x), B(x)), CF (∧)(A(x), B(x))],

for all x ∈ [0, 3
2
]. Figure 3 plots the disjunctive and conjunctive fuzzy normal forms of

A ∩B for respectively the M-, P- and L-triplet.
The upper and lower bounds of the IV FS for the M- and P-triplet show a different
convexity behaviour. It is clear that these t-norms are not suited for further use. In
case of the L-triplet the disjunctive fuzzy normal form becomes zero due to the law of
contradiction. One can wonder here wheter the constructed interval is really meaningful.

Let us now take a deeper look at the shape and width of the general interval [DF , CF ]
constructed by (8), (9) and (10), when using the M-, P- and L-triplet.

From Figure 4 it follows that in case of the L-triplet the difference between the disjunctive
and conjunctive normal form is always the same.

Theorem 1 For the L-triplet

CF (f)(x, y)−DF (f)(x, y) = 2min(1− x, 1− y, x, y),

for all (x, y) ∈ [0, 1]2 and any binary Boolean function f .
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Figure 3: Disjunctive and conjunctive normal forms of A ∩B

Conversely, assuming that the difference between CF and DF is independent of the
Boolean function f we get the following result.

Theorem 2 Let 〈T, S,N〉 be a De Morgan triplet, N an involutive negator with fixpoint a

and suppose that the diagonal δT is continuous on ]a, 1]. If CF (f)−DF (f) is independent
of the binary Boolean function f , then N has to be the standard negator.

If the t-norm in the foregoing theorem is continuous, we can even determine the De
Morgan triplet in a unique way.

Theorem 3 Let 〈T, S,N〉 be a continuous De Morgan triplet with involutive negator N .

If CF (f) − DF (f) is independent of the binary Boolean function f , then 〈T, S,N〉 must
be the L-triplet.

4 Fuzzy normal forms of n-ary Boolean functions

So far, all authors restrict themselves to normal forms of binary Boolean functions. For
n-ary disjunctive and conjunctive normal forms we obtain 22n

different expressions (which
depend on the n-ary Boolean function used). Because this large amount of normal forms
is not easy to work with, we express DF and CF for a De Morgan triplet 〈T, S,N〉, with
N an involutive negator, in the following natural way:

DF (f)(x) = S{f(e) T (xe) | e ∈ {0, 1}n}

CF (f)(x) = T{[(1− f(e)) T (xe)]N | e ∈ {0, 1}n}

where x ∈ [0, 1]n and xe = (xe11 , ..., x
en
n ).
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Figure 4: Difference between CF and DF

First of all we want to know whether DF ≤ CF still holds for all (M, φ)-, (P, φ)-, (L, φ)-,
(D, φ)- and (nM, φ)-triplets.

Theorem 4 For any (M, φ)-, (P, φ)-, (L, φ)-, (D, φ)- and (nM, φ)-triplet it holds that

DF (f) ≤ CF (f)

for any n-ary Boolean function f .

Similarly as in the 2-dimensional case, the L-triplet plays a prominent role in the general
case.

Theorem 5 For the L-triplet:

CF (f)(x)−DF (f)(x) = 1−
∑

e∈{0,1}n

TL(x
e),

for all x ∈ [0, 1]n and any n-ary Boolean function f .

Note that for n = 2

2min(1− x, 1− y, x, y) = 1−
∑

e∈{0,1}2

TL(x
e1 , ye2).

Theorem 5 is therefore a generalization of Theorem 1.

When we work with n-ary Boolean functions, Theorems 2 and 3 extend in the following
natural way.
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Theorem 6 Let 〈T, S,N〉 be a De Morgan triplet and N an involutive negator with fix-

point a. If CF (f)−DF (f) is independent of the n-ary Boolean function f , then:

1. If T (x, ..., x) is continuous on ]a, 1], then N has to be the standard negator.

2. If T is continuous, then 〈T, S,N〉 is the L-triplet.

We need to consider the separate cases in the theorem for it is not true that, if the
difference between the disjunctive and conjunctive fuzzy normal form is independent of
the Boolean function f , the De Morgan triplet used must be the L-triplet. The following
theorems illustrate this statement.

Theorem 7 For the nM-triplet, x ∈ [0, 1]n, I = {1, ..., n} and an arbitrary n-ary Boolean
function f it holds that:

1. If (∀i ∈ I)(xi 6=
1
2
), then there exists a unique n-tuple q ∈ {0, 1}n such that x

qi

i < 1
2
,

∀i ∈ I. It then holds that

CF (f)(x)−DF (f)(x) =







maxi(x
qi

i ) , if maxi(x
qi

i ) = maxj 6=i(x
qj

j ) ,

0 , else .

2. If (∃!i ∈ I)(xi =
1
2
), then

CF (f)(x)−DF (f)(x) = 0 .

3. If (∃(i, j) ∈ I2)(i 6= j ∧ xi = xj =
1
2
), then

CF (f)(x)−DF (f)(x) = 1 .

It follows from Theorem 6 that the nM-triplet is the only (nM, φ)-triplet for which CF (f)−
DF (f) is independent of the n-ary Boolean function f .
Remark that, if the first condition of Theorem 6 is false, it is still possible for a De
Morgan triplet with involutive negator, that CF (f) − DF (f) does not depend on the
Boolean function f used. The following theorem illustrates this claim.

Theorem 8 For any (D, φ)-triplet, x ∈ [0, 1]n, I = {1, ..., n} and any n-ary Boolean

function f it holds that:

CF (f)(x)−DF (f)(x) =







1 , if (∃(i, j) ∈ I2)(i 6= j ∧ xi, xj 6∈ {0, 1}) ,

0 , else .

Figure 5 shows the results of the last two theorems in the 2-dimensional case.
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Figure 5: Difference between CF and DF for binary Boolean functions.

5 Conclusion and further research

In this paper we have investigated the relationship between the n-ary disjunctive and
conjunctive fuzzy normal forms of Boolean functions. It seems that DF ≤ CF only holds
in some cases. In particular, the inequality is fulfilled for every (M, φ)-, (P, φ)-, (L, φ)-,
(D, φ)- and (nM, φ)-triplet.

When working with a continuous De Morgan triplet and an involutive negator, the dif-
ference between the conjunctive and disjunctive normal form will be independent of the
Boolean function f if and only if we are dealing with the L-triplet.

It is interesting to know for which De Morgan triplets inequality (9) becomes an equality
and for which non-continuous De Morgan triplets CF (f)−DF (f) is only a function of the
variable x ∈ [0, 1]n.

Once these problems are solved we can take a deeper look into the interval-valued prefe-
rence structures, introduced by Bilgiç [2].
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[2] T. Bilgiç, Interval-valued preference structures, European Journal of Operational
Research 105 (1998), 162–183.

10



[3] J. Fodor, Contrapositive symmetry of fuzzy implications, Fuzzy Sets and Systems 69
(1995), 141–156.

[4] E.P. Klement, R. Mesiar, E. Pap, Triangular Norms, Kluwer Academic Publishers,
2000.
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