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Abstract: This paper presents the geometrical interpretation of the quasi-
triangular fuzzy number, being also shown that the opposite of quasi-triangular 
fuzzy number is a quasi-triangular fuzzy number with centre symmetrical to the 
origin and spread rotated  with 900 . 

1 Introduction 
 
The concept of quasi-triangular fuzzy numbers generated by a  continuous 
decreasing function g was introduced first by M. Kovács [4]. The shortage that not 
any quasi-triangular fuzzy number has opposite (inverse), but only the ones with 
spread zero, can be solved if quasi-triangular fuzzy numbers set is included 
isomorphically in an extended set and this extended set with addition operation 
forms a group. In section 3 this group is constructed using the addition operation 
over the class of quasi-triangular fuzzy numbers. The addition operation over the 
class of fuzzy numbers or fuzzy quantities was investigated and discussed e. g. in 
[2], [6], [7], [8], [9].  Section 4 presents the geometrical interpretation of the 
quasi-triangular fuzzy number.  

2 Preliminaries 
 
This section reviews the definitions and basic propositions applied in this paper. 
Definition 2.1 (Fuzzy set). Let be X a set. A mapping μ : X → [0, 1] is called 
membership function, and the set A  = { (x, μ (x))  /  x ∈ X} is called fuzzy set on 
X.  The membership function of A is denoted by μA . The collection of all fuzzy set 
on X is denoted by F(X).   

Triangular norms were introduced by K. Menger [10] and studied first by B. 
Schweizer and A. Sklar [11], [12], [13] to model distances in probabilistic metric 



spaces. In fuzzy sets theory triangular norms are extensively used to model the 
logical connection and.  

Definition 2.2 (Triangular norm).  A mapping T : [0, 1] ×  [0, 1] → [0, 1] is a 
triangular norm if it is symmetric, associative, non-decreasing in each argument 
and T(x, 1) = x, for all x ∈ [0,1]. 

Definition 2.3.  A triangular norm T is  said to be Archimedean if T is continuous 
and T(x, x) < x, for all x ∈ [0,1].  

Theorem 2.1 (C.H. Ling [5]). Every Archimedean triangular norm is 
representable by a continuous and decreasing function g :  [0, 1] → [0, +∞] with     
g (1) = 0 and T(x, y) = g[– 1]  (g(x)+ g(y)), where  
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Let p ∈ [1, +∞] and g : [0, 1] → [0, +∞] be a continuos, strictly decreasing 
function with boundary properties  g (1) = 0 and +∞≤=→ 00 )(lim gtgt .  

Definition 2.4 (Quasi-triangular fuzzy number). The set of quasi-triangular 
fuzzy numbers is 
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where χA is characteristic function of the set A.  The elements of Ng will be called 
quasi- triangular fuzzy numbers generated by g with centre a and spread d and we 
will denote them by < a, d >. 

 

 
Fig.2.1.  Quasi-triangular fuzzy number < 3, 1 >  if  g(t) = 1 – t2. 



Suppose A and B are fuzzy sets on ℜ . If we are using  Generalized Zadeh’s 
extension principle [1] on Archimedean  triangular norm Tgp  generated by 
function gp  we get:  

Definition 2.5 (Tgp-sum).  If p∈ [1, +∞), then Tgp -sum of  A, B ∈ F(ℜ ) is an 
fuzzy set on noted by A + B with membership function: ℜ
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for all t ∈ℜ . 

Definition 2.6 (Tgp -sum).  If p = +∞, then Tgp -sum of  A, B ∈ F(ℜ ) is an fuzzy 
set on ℜ noted by A + B with membership function: 
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for all t ∈ℜ . 

T. Keresztfalvi and M. Kovács  in [3] proved the following theorems: 

Theorem 2.2. Let p ∈ [1, +∞].  If  < a, d > and  < b, e > are quasi-triangular fuzzy 
numbers, then  
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Theorem 2.3. (Ng , + ) is a commutative monoid with element zero and if             
p ∈ (1, +∞], then it posses the simplification property. 

3 Additive group of quasi-triangular fuzzy numbers 
 
As follows from Theorem 2.3, the quasi-triangular fuzzy numbers do not form an 
additive group. This fact can complicate some theoretical considerations or 
applied procedures. This deficiency can be removed if the quasi-triangular fuzzy 
numbers set is included isomorphically in an extended set and this extended set 
with Tgp-sum forms an additive group.  In this  section we  construct this group if  
p > 1. 

As follows from the definition of Tgp-Cartesian product,  the membership function 
of quasi-triangular fuzzy numbers pair ( < a, d >, < b, e >) is  

( ), )(),(),( ,,,,, yμxμTyxμ ebdagp)ebda( ><><><>< =  



for all (x, y) ∈ℜ × . The set of all quasi-triangular fuzzy numbers pair we 
denote by Γ

ℜ
gp .  

 

 
Fig. 3.1. The quasi-triangular fuzzy numbers pair ( < 10, 1 >, < 8, 2 >) if 

g(t) = 1 – t,  p = 1 and  p = 1.5 respectively. 
 

 
Fig. 3.2. The quasi-triangular fuzzy numbers pair ( < 10, 1 >, < 8, 2 >) if 

g(t) = 1 – t,  p = 2 and p = +∞ respectively. 
 

Definition 3.1.  Let ( < a1, d1 >, < a2, d2 >), ( < a3, d3 >, < a4, d4 >) ∈ Γgp . Then 
we say that ( < a1, d1 >, < a2, d2 >) is equivalent to ( < a3, d3 >, < a4, d4 >), and 
write ( < a1, d1 >, < a2, d2 >) ~ ( < a3, d3 >, < a4, d4 >) if  
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It can be easily seen that ~ is an equivalence relation. This relation introduces in 
Γgp a division on equivalence class. The factor set is  

, },,,  /  ),,,({~ 22112211 gpgp dadadada Γ>∈<><><><=Γ  

where 
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Definition 3.2. The addition operation in Γgp is defined by 
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for all  ),,,(  ,),,,( 44332211 ><><><>< dadadada ~gpΓ . 

Because the commutative monoid   (Ng , + )  possesses simplification  property if 
p > 1, it follows that: 

Theorem 3.1.  If p > 1, then  ( ~gpΓ , ⊕ ) is an additive commutative group. 

The opposite of  ),,,( 2211 ><>< dada we denote by   ),,,( 2211 ><><Θ dada . 

Proposition 3.2. If p > 1, then  the function F : Ng  → ~gpΓ ,  
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is a homomorphism. 
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Theorem  3.3.    (Ng , + ) is isomorph to  (F(Ng ), ⊕ ). 

Proof.  If two quasi-triangular fuzzy numbers, such that 

, then 
gNyxyx >∈<>< 2211 ,,,

),(),( 2211 ><=>< yxFyxF )0,0,,()0,0,,( 2211 ><><=><>< yxyx . 
From which it follows that . Consequently (N2121  and yyxx == g , + ) is isomorph 
to  (F(Ng ), ⊕ ).  

� 

The consequence of Theorem 3.3 is that )0,0,,( ><>< yx  is identical with <x, y > 
if we consider the isomorphism in Theorem 3.3. Using this property we introduce 
the following notations: 



Definition 3.3. We denote by [x, y] = )0,0,,( ><>< yx  the quasi-triangular fuzzy 
number with centre x and spread y, and opposite of [x, y] with Θ [x ,y] = 

),,0,0( ><>< yx . 

Definition 3.4. If p > 1, then 
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is the extended set of quasi-triangular fuzzy numbers. 

Theorem 3.4. If p > 1, then =gpΩ ~gpΓ . 

Proof. Let ~),,,( 2211 gpyxyx Γ∈><>< such that . In this case we get: 21 yy ≥
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Let ~),,,( 2211 gpyxyx Γ∈><>< such that . In this case we get: 21 yy <
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If we introduce the notation: ,  for all 
, from Theorem 3.4 it follows that: 
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Corollary 3.5.  If p >1 then 
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4 Geometrical interpretation of quasi-triangular 
fuzzy numbers 

 
In this section we show that the opposite of quasi-triangular fuzzy number is a 
quasi-triangular fuzzy number with centre symmetrical to the origin and spread 
rotated with 900 .  

Let p ∈ (1, +∞] be a number and be a quasi-triangular fuzzy 
numbers pair. We search for all a quasi-triangular fuzzy numbers pair 

 that 

),,,( 2211 ><>< dada

),,,( 2211 ><>< yxyx . ),,,(),,,( 22112211 ><><∈><>< dadayxyx  
Immediately, it follows from the definition of relation ~, 

 ),,,(),,,( 22112211 ><><∈><>< dadayxyx if only if  the centres ,  
 belong to the line that is parallel with first bisector and 

 The  intersection point of line  with axis Ox 
is and with axis Oy is .  
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and by ),,,( 2211 ><>< dada qqq yyc
1
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pair .  The large axis of  is parallel to 
axis Ox if , and the large axis of  is parallel to axis 

Oy if . The equality shows that  the large axis of 
 is parallel to large axis of , and  c
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Let be a fuzzy number such that d > 0. An element 
is in equivalence class  if and only if 
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21 )( −= , where  a is the intersection point of 
line with axis Ox, and d is the generalized focal length. Since in 2121 aaxx −=−



this case large axis of  pair  is parallel to axis Ox it follows 
that the centre of   is  ( a , 0 ) and spread d points to axis Ox. 
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Let be a fuzzy number such that d > 0. An element 
is in equivalence class  if and only if 
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12 aaa −= ,  and 12 dd > qqq ddd
1

12 )( −= . Consequently,  –a  is the intersection 
point of line with axis Ox, and d is the generalized focal length. 
Since in this case , the large axis of  pair  is parallel 
to axis Oy. Consequently, the centre of    is    (–a , 0 ) and spread d is 
perpendicular on axis Ox. 
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Example 4.1.  Let ,  be a function and  be a 
number. The membership function of quasi-triangular fuzzy number is 
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In Fig 4.1 it is presented that the opposite of the quasi-triangular fuzzy number is a 
quasi-triangular fuzzy number with centre symmetrical to the origin and spread 
rotated with 900 . 
 



 
Fig 4.1. Quasi-triangular fuzzy numbers and   ]2,4[ . ]2,4[Θ  
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