The opposite of quasi-triangular fuzzy number

Zoltán Makó
Sapientia University, Department of Mathematics and Informatics
4100 - Csíkszereda, Romania

Abstract: This paper presents the geometrical interpretation of the quasitriangular fuzzy number, being also shown that the opposite of quasi-triangular fuzzy number is a quasi-triangular fuzzy number with centre symmetrical to the origin and spread rotated with 90°

1 Introduction

The concept of quasi-triangular fuzzy numbers generated by a continuous decreasing function g was introduced first by M. Kovács [4]. The shortage that not any quasi-triangular fuzzy number has opposite (inverse), but only the ones with spread zero, can be solved if quasi-triangular fuzzy numbers set is included isomorphically in an extended set and this extended set with addition operation forms a group. In section 3 this group is constructed using the addition operation over the class of quasi-triangular fuzzy numbers. The addition operation over the class of fuzzy numbers or fuzzy quantities was investigated and discussed e. g. in [2], [6], [7], [8], [9]. Section 4 presents the geometrical interpretation of the quasi-triangular fuzzy number.

2 Preliminaries

This section reviews the definitions and basic propositions applied in this paper.
Definition 2.1 (Fuzzy set). Let be X a set. A mapping $\mu: X \rightarrow[0,1]$ is called membership function, and the set $A=\{(x, \mu(x)) / x \in X\}$ is called fuzzy set on X. The membership function of A is denoted by μ_{A}. The collection of all fuzzy set on X is denoted by $F(X)$.

Triangular norms were introduced by K. Menger [10] and studied first by B. Schweizer and A. Sklar [11], [12], [13] to model distances in probabilistic metric
spaces. In fuzzy sets theory triangular norms are extensively used to model the logical connection and.

Definition 2.2 (Triangular norm). A mapping $T:[0,1] \times[0,1] \rightarrow[0,1]$ is a triangular norm if it is symmetric, associative, non-decreasing in each argument and $T(x, 1)=x$, for all $x \in[0,1]$.
Definition 2.3. A triangular norm T is said to be Archimedean if T is continuous and $T(x, x)<x$, for all $x \in[0,1]$.

Theorem 2.1 (C.H. Ling [5]). Every Archimedean triangular norm is representable by a continuous and decreasing function $g:[0,1] \rightarrow[0,+\infty]$ with $g(1)=0$ and $T(x, y)=g^{[-1]}(g(x)+g(y))$, where

$$
g^{[-1]}(x)= \begin{cases}g^{-1}(x) & \text { if } 0 \leq x \leq g(0) \\ 0 & \text { if } x>g(0)\end{cases}
$$

Let $p \in[1,+\infty]$ and $g:[0,1] \rightarrow[0,+\infty]$ be a continuos, strictly decreasing function with boundary properties $g(1)=0$ and $\lim _{t \rightarrow 0} g(t)=g_{0} \leq+\infty$.

Definition 2.4 (Quasi-triangular fuzzy number). The set of quasi-triangular fuzzy numbers is
$N_{g}=\{A \in F(\mathfrak{R}) /$ there is $a \in \mathfrak{R}$ and $d>0$ such that

$$
\left.\mu_{\mathrm{A}}(t)=g^{[-1]}\left(\frac{|t-a|}{d}\right) \text {, for all } t \in \mathfrak{R}\right\}
$$

$\cup\left\{A \in F(\mathfrak{R}) /\right.$ there is $a \in \mathfrak{R}$ such that $\mu_{\mathrm{A}}(t)=\chi_{\{a\}}(t)$, for all $\left.t \in \mathfrak{R}\right\}$, where χ_{A} is characteristic function of the set A. The elements of N_{g} will be called quasi- triangular fuzzy numbers generated by g with centre a and spread d and we will denote them by $\langle a, d\rangle$.

Fig.2.1. Quasi-triangular fuzzy number $<3,1>$ if $g(t)=1-t^{2}$.

Suppose A and B are fuzzy sets on \mathfrak{R}. If we are using Generalized Zadeh's extension principle [1] on Archimedean triangular norm $T_{g p}$ generated by function g^{p} we get:

Definition 2.5 ($\mathbf{T g p}_{\mathrm{gp}}$-sum). If $p \in[1,+\infty)$, then $T_{g p}-$ sum of $A, B \in F(\Re)$ is an fuzzy set on \mathfrak{R} noted by A + B with membership function:

$$
\mu_{\mathrm{A}+\mathrm{B}}(t)=\sup _{x+y=t}\left[g^{[-1]}\left(g^{p}\left(\mu_{\mathrm{A}}(x)\right)+g^{p}\left(\mu_{\mathrm{B}}(y)\right)\right)^{1 / p}\right],
$$

for all $t \in \mathfrak{R}$.
Definition 2.6 (\mathbf{T}_{gp}-sum). If $p=+\infty$, then $T_{g p}-$ sum of $A, B \in F(\mathfrak{R})$ is an fuzzy set on \mathfrak{R} noted by $\mathrm{A}+\mathrm{B}$ with membership function:

$$
\mu_{\mathrm{A}+\mathrm{B}}(t)=\sup _{x+y=t} \min \left\{\mu_{\mathrm{A}}(x), \mu_{\mathrm{B}}(y)\right\},
$$

for all $t \in \mathfrak{R}$.
T. Keresztfalvi and M. Kovács in [3] proved the following theorems:

Theorem 2.2. Let $p \in[1,+\infty]$. If $\langle a, d\rangle$ and $\langle b, e\rangle$ are quasi-triangular fuzzy numbers, then

$$
\langle a, d\rangle+\langle b, e\rangle=\left\langle a+b,\left(d^{q}+e^{q}\right)^{1 / q}\right\rangle,
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
Theorem 2.3. $\left(N_{g},+\right)$ is a commutative monoid with element zero and if $p \in(1,+\infty]$, then it posses the simplification property.

3 Additive group of quasi-triangular fuzzy numbers

As follows from Theorem 2.3, the quasi-triangular fuzzy numbers do not form an additive group. This fact can complicate some theoretical considerations or applied procedures. This deficiency can be removed if the quasi-triangular fuzzy numbers set is included isomorphically in an extended set and this extended set with $T_{g p}$-sum forms an additive group. In this section we construct this group if $p>1$.

As follows from the definition of $T_{g p}$-Cartesian product, the membership function of quasi-triangular fuzzy numbers pair ($\langle a, d\rangle,\langle b, e\rangle$) is

$$
\mu_{(<a, d>,<b, e>)}(x, y)=T_{g p}\left(\mu_{<a, d>}(x), \mu_{<b, e>}(y)\right),
$$

for all $(x, y) \in \mathfrak{R} \times \mathfrak{R}$. The set of all quasi-triangular fuzzy numbers pair we denote by $\Gamma_{g p}$.

Fig. 3.1. The quasi-triangular fuzzy numbers pair ($\langle 10,1\rangle,\langle 8,2\rangle$) if $g(t)=1-t, p=1$ and $p=1.5$ respectively.

Fig. 3.2. The quasi-triangular fuzzy numbers pair ($\langle 10,1\rangle,\langle 8,2\rangle$) if $g(t)=1-t, p=2$ and $p=+\infty$ respectively.

Definition 3.1. Let ($\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle$), $\left(\left\langle a_{3}, d_{3}\right\rangle,\left\langle a_{4}, d_{4}\right\rangle\right) \in \Gamma_{g p}$. Then we say that ($\left.\left\langle a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle$) is equivalent to ($\left.\left.<a_{3}, d_{3}\right\rangle,<a_{4}, d_{4}\right\rangle$), and write ($\left.\left\langle a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle$) $\sim\left(<a_{3}, d_{3}\right\rangle,<a_{4}, d_{4}>$) if

$$
a_{1}+a_{4}=a_{2}+a_{3} \quad \text { and }\left(d_{1}{ }^{q}+d_{4}{ }^{q}\right)^{1 / q}=\left(d_{2}{ }^{q}+d_{3}{ }^{q}\right)^{1 / q},
$$

where $\frac{1}{p}+\frac{1}{q}=1$.
It can be easily seen that \sim is an equivalence relation. This relation introduces in $\Gamma_{g p}$ a division on equivalence class. The factor set is

$$
\Gamma_{g p} / \sim=\left\{\overline{\left(<a_{1}, d_{1}>,<a_{2}, d_{2}>\right)} /<a_{1}, d_{1}>,<a_{2}, d_{2}>\in \Gamma_{g p}\right\},
$$

where

$$
\begin{aligned}
\overline{\left(<a_{1}, d_{1}>,<a_{2}, d_{2}>\right)} & \left.=\left\{\left(<a_{3}, d_{3}>,<a_{4}, d_{4}\right\rangle\right) /<a_{3}, d_{3}\right\rangle,<a_{4}, d_{4}>\in \Gamma_{g p} \\
& \text { and } \left.a_{1}+a_{4}=a_{2}+a_{3} \text { and }\left(d_{1}^{q}+d_{4}^{q}\right)^{1 / q}=\left(d_{2}^{q}+d_{3}{ }^{q}\right)^{1 / q}\right\} .
\end{aligned}
$$

Definition 3.2. The addition operation in $\Gamma_{g p}$ is defined by

$$
\begin{aligned}
& \qquad \overline{\left(<a_{1}, d_{1}>,<a_{2}, d_{2}>\right)} \oplus \overline{\left(<a_{3}, d_{3}>,<a_{4}, d_{4}>\right)}= \\
& \text { for all } \overline{\left(<a_{1}, d_{1}>,\left\langle a_{3},\left(d_{1}^{q}+d_{3}^{q}\right)^{1 / q}>,\left(<a_{2}+a_{4},\left(d_{2}^{q}+d_{4}^{q}\right)^{1 / q}>\right)\right.\right.}, \overline{\left(<a_{3}, d_{3}>,<a_{4}, d_{4}>\right)} \Gamma_{g p} / \sim
\end{aligned}
$$

Because the commutative monoid ($N_{g},+$) possesses simplification property if $p>1$, it follows that:
Theorem 3.1. If $\mathrm{p}>1$, then $\left(\Gamma_{g p} / \sim, \oplus\right)$ is an additive commutative group.
The opposite of $\overline{\left(\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle\right)}$ we denote by $\Theta \overline{\left.\left(<a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle\right)}$.
Proposition 3.2. If $\mathrm{p}>1$, then the function $F: N_{g} \rightarrow \Gamma_{g p} / \sim$,

$$
F(\langle x, y\rangle)=\overline{(\langle x, y\rangle,\langle 0,0\rangle)}
$$

is a homomorphism.
Proof. If $\left.\left\langle x_{1}, y_{1}\right\rangle,<x_{2}, y_{2}\right\rangle \in N_{g}$ then

$$
\begin{aligned}
F\left(\left\langle x_{1}, y_{1}\right\rangle+\left\langle x_{2}, y_{2}\right\rangle\right) & =F\left(\left\langle x_{1}+x_{2},\left(y_{1}^{q}+y_{2}^{q}\right)^{1 / q}\right\rangle\right) \\
& =\overline{\left(\left\langle x_{1}+x_{2},\left(y_{1}^{q}+y_{2}^{q}\right)^{1 / q}>,<0,0\right\rangle\right)} \\
& =\overline{\left.\left.\left(\left\langle x_{1}, y_{1}\right\rangle,<0,0\right\rangle\right) \oplus\left(\left\langle x_{2}, y_{2}\right\rangle,<0,0\right\rangle\right)} \\
& =F\left(\left\langle x_{1}, y_{1}\right\rangle\right) \oplus F\left(\left\langle x_{2}, y_{2}\right\rangle\right) .
\end{aligned}
$$

Theorem 3.3. ($N_{g},+$) is isomorph to $\left(F\left(N_{g}\right), \oplus\right)$.
Proof. If $\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle \in N_{g}$ two quasi-triangular fuzzy numbers, such that $\left.F\left(\left\langle x_{1}, y_{1}\right\rangle\right)=F\left(<x_{2}, y_{2}\right\rangle\right)$, then $\overline{\left.\left(\left\langle x_{1}, y_{1}\right\rangle,<0,0\right\rangle\right)}=\overline{\left.\left(\left\langle x_{2}, y_{2}\right\rangle,<0,0\right\rangle\right)}$. From which it follows that $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Consequently ($N_{g},+$) is isomorph to $\left(F\left(N_{g}\right), \oplus\right)$.

The consequence of Theorem 3.3 is that $\overline{(\langle x, y\rangle,\langle 0,0\rangle)}$ is identical with $\langle x, y\rangle$ if we consider the isomorphism in Theorem 3.3. Using this property we introduce the following notations:

Definition 3.3. We denote by $[x, y]=\overline{(\langle x, y\rangle,\langle 0,0\rangle)}$ the quasi-triangular fuzzy number with centre x and spread y , and opposite of $[x, y]$ with $\Theta[x, y]=$ $\overline{(\langle 0,0\rangle,\langle x, y\rangle)}$.

Definition 3.4. If $p>1$, then

$$
\Omega_{g p}=\left\{[x, y] /<\mathrm{x}, \mathrm{y}>\in N_{g}\right\} \cup\left\{\Theta[x, y] /<\mathrm{x}, \mathrm{y}>\in N_{g}\right\}
$$

is the extended set of quasi-triangular fuzzy numbers.
Theorem 3.4. If $\mathrm{p}>1$, then $\Omega_{g p}=\Gamma_{g p} / \sim$.
Proof. Let $\overline{\left.\left.\left(<x_{1}, y_{1}\right\rangle,<x_{2}, y_{2}\right\rangle\right)} \in \Gamma_{g p} / \sim$ such that $y_{1} \geq y_{2}$. In this case we get:

$$
\begin{aligned}
\overline{\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}>\right)\right.} & =\overline{\left(\left\langle x_{1}, y_{1}\right\rangle,<0,0>\right) \oplus \overline{\left(<0,0>,<x_{2}, y_{2}>\right)}} \\
& =\overline{\left[x_{1}, y_{1}\right] \oplus\left(\Theta\left[x_{2}, y_{2}\right]\right)} \\
& =\overline{\left(\left\langle x_{1}-x_{2},\left(y_{1}^{q}-y_{2}{ }^{q}\right)^{1 / q}>,<0,0>\right)\right.} \\
& =\left[x_{1}-x_{2},\left(y_{1}{ }^{q}-y_{2}{ }^{q}\right)^{1 / q}\right] .
\end{aligned}
$$

Let $\left.\left(\left\langle x_{1}, y_{1}\right\rangle,<x_{2}, y_{2}\right\rangle\right) \in \Gamma_{g p} / \sim$ such that $y_{1}<y_{2}$. In this case we get:

$$
\begin{aligned}
\overline{\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}>\right)\right.} & =\overline{\left(\left\langle x_{1}, y_{1}\right\rangle,<0,0>\right) \oplus} \overline{\left(\langle 0,0\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)} \\
& =\overline{\left[x_{1}, y_{1}\right] \oplus\left(\Theta\left[x_{2}, y_{2}\right]\right)} \\
& =\overline{\left(\left\langle0,0>,\left\langle x_{2}-x_{1},\left(y_{2}^{q}-y_{1}^{q}\right)^{1 / q}>\right)\right.\right.} \\
& =\Theta\left[x_{2}-x_{1},\left(y_{2}^{q}-y_{1}^{q}\right)^{1 / q}\right] .
\end{aligned}
$$

If we introduce the notation: $\left[x_{1}, y_{1}\right] \Theta\left[x_{2}, y_{2}\right]=\left[x_{1}, y_{1}\right] \oplus\left(\Theta\left[x_{2}, y_{2}\right]\right)$, for all $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in \Omega_{\mathrm{gp}}$, from Theorem 3.4 it follows that:

Corollary 3.5. If $\mathrm{p}>1$ then
(i) $[0,0] \Theta[x, y]=\Theta[x, y]$, for all $[x, y] \in \Omega_{\mathrm{gp}}$.
(ii) $\quad \Theta(\Theta[x, y])=[x, y]$, for all $[x, y] \in \Omega_{\mathrm{gp}}$.
(iii) $\quad\left(\Theta\left[x_{1}, y_{1}\right]\right) \oplus\left(\Theta\left[x_{2}, y_{2}\right]\right)=\Theta\left(\left[x_{1}, y_{1}\right] \oplus\left[x_{2}, y_{2}\right]\right)$, for all $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in \Omega_{\mathrm{gp}}$.
(iv) $\quad\left[x_{1}, y_{1}\right] \Theta\left[x_{2}, y_{2}\right]= \begin{cases}{\left[x_{1}-x_{2},\left(y_{1}^{q}-y_{2}{ }^{q}\right)^{1 / q}\right]} & \text { if } y_{1} \geq y_{2}, \\ \Theta\left[x_{2}-x_{1},\left(y_{2}{ }^{q}-y_{1}^{q}\right)^{1 / q}\right] & \text { if } \mathrm{y}_{1}<y_{2},\end{cases}$
for all $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right] \in \Omega_{\mathrm{gp}}$.

4 Geometrical interpretation of quasi-triangular fuzzy numbers

In this section we show that the opposite of quasi-triangular fuzzy number is a quasi-triangular fuzzy number with centre symmetrical to the origin and spread rotated with 90°.
Let $p \in\left(1,+\infty\right.$] be a number and ($\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle$) be a quasi-triangular fuzzy numbers pair. We search for all a quasi-triangular fuzzy numbers pair $\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right) \quad$ that $\quad\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right) \in \overline{\left(\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle\right)}$. Immediately, it follows from the definition of relation \sim, $\left(\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right) \in \overline{\left(\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle\right)}$ if only if the centres $\left(x_{1}, x_{2}\right)$, (a_{1}, a_{2}) belong to the line $x_{1}-x_{2}=a_{1}-a_{2}$ that is parallel with first bisector and $y_{1}^{q}+d_{2}^{q}=y_{2}{ }^{q}+d_{1}^{q}$. The intersection point of line $x_{1}-x_{2}=a_{1}-a_{2}$ with axis $O x$ is $\left(a_{1}-a_{2}, 0\right)$ and with axis $O y$ is $\left(0, a_{2}-a_{1}\right)$.

We denote by $c_{1}=\left|d_{1}^{q}-d_{2}^{q}\right|^{1 / q}$ the generalized focal length of pair ($\left.\left.<a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle$) and by $c_{2}=\left.\left|y_{1}{ }^{q}-y_{2}\right|^{q}\right|^{1 / q}$ the generalized focal length of pair ($\left\langle x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle$). The large axis of ($\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle$) is parallel to axis $O x$ if $d_{2}<d_{1}$, and the large axis of ($\left.\left.<a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle$) is parallel to axis $O y$ if $d_{1}<d_{2}$. The equality $y_{1}{ }^{q}+d_{2}{ }^{q}=y_{2}{ }^{q}+d_{1}^{q}$ shows that the large axis of $\left.\left(<x_{1}, y_{1}\right\rangle,\left\langle x_{2}, y_{2}\right\rangle\right)$ is parallel to large axis of $\left(\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle\right)$, and $c_{1}=$ c_{2}.

Let $[a, d] \in \Omega_{\mathrm{gp}}$ be a fuzzy number such that $d>0$. An element ($\left.\left.<a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle$) is in equivalence class $[a, d] \in \Omega_{\mathrm{gp}}$ if and only if $a=a_{1}-a_{2}, \quad d_{1}>d_{2}$ and $d=\left(d_{1}{ }^{q}-d_{2}{ }^{q}\right)^{1 / q}$, where a is the intersection point of line $x_{1}-x_{2}=a_{1}-a_{2}$ with axis $O x$, and d is the generalized focal length. Since in
this case large axis of pair ($\left\langle a_{1}, d_{1}\right\rangle,\left\langle a_{2}, d_{2}\right\rangle$) is parallel to axis $O x$ it follows that the centre of $[a, d]$ is $(a, 0)$ and spread d points to axis $O x$.

Let $\Theta[a, d] \in \Omega_{\mathrm{gp}}$ be a fuzzy number such that $d>0$. An element $\left.\left.\left(<a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}\right\rangle\right)$ is in equivalence class $\Theta[a, d] \in \Omega_{\mathrm{gp}}$ if and only if $a=a_{2}-a_{1}, \quad d_{2}>d_{1}$ and $d=\left(d_{2}{ }^{q}-d_{1}\right)^{{ }^{1 / q}}$. Consequently, $-a$ is the intersection point of line $x_{1}-x_{2}=a_{1}-a_{2}$ with axis $O x$, and d is the generalized focal length. Since in this case $d_{2}>d_{1}$, the large axis of pair ($\left.<a_{1}, d_{1}\right\rangle,<a_{2}, d_{2}>$) is parallel to axis $O y$. Consequently, the centre of $[a, d]$ is $(-a, 0)$ and spread d is perpendicular on axis $O x$.

Example 4.1. Let $g:[0,1] \rightarrow[0,+\infty), g(x)=1-t^{2}$ be a function and $p=2$ be a number. The membership function of quasi-triangular fuzzy number $[a, d]$ is

$$
\mu(t, 0)= \begin{cases}0 & \text { if } t \leq a-d \\ \sqrt{1-\frac{a}{d}+\frac{t}{d}} & \text { if } a-d<t \leq a \\ \sqrt{1+\frac{a}{d}-\frac{t}{d}} & \text { if } a<t \leq a+d \\ 0 & \text { if } a+d<t\end{cases}
$$

and if $u \neq 0$, then $\mu(t, u)=0$ for all $t \in \mathfrak{R}$.
The membership function of quasi - triangular fuzzy number $\Theta[a, d]$ is

$$
\mu(0, u)= \begin{cases}0 & \text { if } u \leq-a-d \\ \sqrt{1+\frac{a}{d}+\frac{u}{d}} & \text { if }-a-d<u \leq-a \\ \sqrt{1-\frac{a}{d}-\frac{u}{d}} & \text { if }-a<u \leq-a+d \\ 0 & \text { if }-a+d<u\end{cases}
$$

and if $t \neq 0$, then $\mu(t, u)=0$ for all $u \in \mathfrak{R}$.
In Fig 4.1 it is presented that the opposite of the quasi-triangular fuzzy number is a quasi-triangular fuzzy number with centre symmetrical to the origin and spread rotated with 90°.

Fig 4.1. Quasi-triangular fuzzy numbers $[4,2]$ and $\Theta[4,2]$.

References

[1] R. Fullér and T. Keresztfalvi: On Generalization of Nguyen's theorem, Fuzzy Sets and Systems, 41 (1991) 371-374.
[2] W. Göhler, S. Göhler: Contributions to fuzzy analysis, Fuzzy Sets and Systems, 105 (1999) 201-224.
[3] T. Keresztfalvi and M. Kovács: g,p-fuzzification of arithmetic operations, Tatra Mountains Mathematical Publications, 1 (1992) 65-71.
[4] M. Kovács: A stable embedding of ill-posed linear systems into fuzzy systems, Fuzzy Sets and Systems, 45 (1992) 305-312.
[5] C. H. Ling: Representation of associative functions, Publ. Math. Debrecen, 12 (1965) 189-212.
[6] M. Mareš: Algebraic purism is expensive if it concerns fuzzy quantities, BUSEFAL, 53 (1992/1993) 48-53.
[7] M. Mareš: Multiplication of fuzzy quantities, Kybernetika, 28 (1992), Number 5, 337-356.
[8] M. Mareš: Algebraic equivalences over fuzzy quantities, Kybernetika, 29 (1993), Number 2, 121-132.
[9] M. Mareš: Weak arithmetics of fuzzy numbers, Fuzzy Sets and Systems, 91 (1997) 143-153.
[10] K. Menger: Statistical metrics, Proc. Nat. Acad. Sci. USA, 28 (1942) 535537.
[11] B. Schweizer, A. Sklar: Associative functions and statistical triangle inequalities, Publ. Math. Debrecen, 8 (1961) 169-186.
[12] B. Schweizer, A. Sklar: Associative functions and abstract semigroups, Publ. Math. Debrecen, 10 (1963) 69-81.
[13] B. Schweizer, A. Sklar: Probabilistic Metric Spaces, North-Holland, Amsterdam, 1983.

