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Abstract

There are presented some recent results and applications of pseudo-analysis, analogs in
measure theory, integration, integral operators, convolution, Laplace transform. There are
presented many applications in different fields as optimization, nonlinear differential and dif-
ference equations, economy, game theory, risk management, etc.
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1 Introduction

We want to stress here some of the advantages of the pseudo—analysis. There is covered with
one theory and so with unified methods equations ( usually nonlinear) from many different fields
(system theory, optimization, control theory, differential equations, difference equations, decision
making, etc.). Pseudo-analysis is based on the semiring structure on the real interval [a,b] C
[—o0,00], [6, 9, 10, 11, 12, 13, 14]. We can stress three main problems which usually occurs
in soft computing: uncertainty, nonlinearity and optimization. Namely, instead of the usual plus-
product structure of real numbers a semiring structure on extended reals with respect to some other
operations (pseudo-operations) is considered. For example, max-min, max-plus, max- product or
operations generated by some additive generator g are included, and specially triangular conorm-
triangular norm.

We present some parts of mathematical analysis in analogy with the classical mathematical
analysis as measure theory, integration, integral operators, convolution, Laplace transform, etc.
Many problems in fuzzy logic, fuzzy sets, neural nets, fuzzy-neural nets, multicriteria decision
making, etc. can be treated by this mathematical tool. There are also many applications in
different fields as optimization, nonlinear differential and difference equations, economy, game
theory, risk management, [3, 4, 6, 9, 14, 16, 19].

2 Pseudo-operations

2.1 Semirings

Let [a,b] be a closed ( in some cases semiclosed) subinterval of [—oco, +00]. We consider here a total
order < on [a,b] (although it can be taken in the general case a partial order). The operation
@ (pseudo-addition) is a function @ : [a,b] X [a,b] — [a,b] which is commutative, nondecreasing,
associative and has a zero element, denoted by 0.

Let [a,b]+ = {z : z € [a,b], = > 0}.

The operation ® (pseudo-multiplication) is a function ©® : [a,b] X [a,b] — [a,b] which is com-
mutative, positively nondecreasing, i.e. < y implies z ® z < y ® z, z € [a, b+, associative and
for which there exist a unit element 1 € [a, b], i.e., for each z € [a,b] we have 1 © = = z.

We suppose, further, 0 ® z = 0 and that ® is a distributive pseudo-multiplication with respect
to @, i.e.

rOW@2)=(0y &2,



The structure ([a, b], ®, ®) is called a semiring. It can be considered a general algebraic structure
(P,®,®) on an arbitrary set P endowed with the operations @& and ® which satisfy the previously
given conditions ([5]). In this paper we will consider only very special semirings ([6, 9]) with the
following continuous operations:

Case I) z ® y = min{z,y}, =z Oy =z +y, on the interval | — co,+00]. We have 0 = +oc0
and 1 =0.

Case II) Semirings with pseudo-operations defined by monotone and continuous generator g
([9, 11]). In this case we will consider only strict pseudo - addition, i.e., such that the function &
is continuous and strictly increasing in (a,b) % (a,b).

By representation theorem ([2, 11]) for each strict pseudo-addition & there exists a monotone
function g (generator for @ ) , g : [a,b] = [—00, 0] (or with values in [0, 00]) such g(0) = 0 and

udv=g"(g(u)+g()).

Using a generator g of strict pseudo-addition @, we can define pseudo-multiplication ® :

uev=g""(glu)gv)).

This is the only way to define pseudo-multiplication ®, which is distributive with respect to &
generated by the function g.
Case III Let & = max and ® = min on the interval [—o0, +00].

Example 1 The special cases on interval [0, 1], see [1, 2].

(i) A triangular norm (t-norm for short) is a binary operation T : [0,1]*> — [0,1] which is
commutative, associative, monotone and 1 is the neutral element.

If T is a t-norm, then its dual t-conorm S : [0,1]*> — [0, 1] is given by

S(z,y) =1-TA —=z,1 —y).

(ii) A uninorm U (respectively t-norm T') is a commutative, associative, monotone binary
operation on the unit interval [0,1] and for some 0 < e < 1 we have U(z,e) = x (respectively
T(z,1) =z) for all z € [0,1].

2.2 Semiring of functions

An idempotent semigroup (semiring, e.g., cases I and III form the preceding part) M is called an
idempotent metric semigroup (semiring) if it is endowed with a metric p: M x M — R such that
the operation @ is (respectively, the operations @ and ® are) uniformly continuous on any order-
bounded set in the topology induced by p and any order-bounded set is bounded in the metric.
Let X be a set, and let M = (M,®, p) be an idempotent metric semigroup. The set B(X, M)
of bounded mappings X — M i.e., mappings with order-bounded range, is an idempotent metric
semigroup with respect to the pointwise addition (¢ ® ¢)(z) = ¢(z) ® ¥(z), the corresponding
partial order, and the uniform metric p(p,¢) = sup, p(p(z),¥(x)). If P = (P,®,®,p) is a
semiring, then B(X, S) has the structure of an P-semimodule, i.e., the multiplication by elements of
P is defined on B(X, P) by (a®¢)(z) = a®p(z). This P-semimodule will also be referred to as the
space of (bounded) P-valued functions on X. If X is a topological space, then by C'(X, A) we denote
the subsemimodule of continuous functions in B(X, A). If X is finite, X = {z1,...,2,}, n € N,
then the semimodules C(X, A) and B(X, A) coincide and can be identified with the semimodule
P" = {(a1,...,an) : a; € A}. Any vector @ € P™ can be uniquely represented as a linear
combination a = @?:1 a; © ej, where {e;, j = 1,...,n} is the standard basis of P™ (the jth
coordinate of e; is equal to 1, and the other coordinates are equal to 0). As in the classical linear
algebra, we can readily prove that the semimodule of continuous homomorphisms m: P" — P
(in what follows such homomorphisms are called linear functionals on P") is isomorphic to P"
itself. Similarly, any endomorphism H: P" — P™ (a linear operator on P") is determined by an
P-valued n x n matrix, see [4, 6].



2.3 Fuzzy neural networks and parallel processing.

Fuzzy neural networks give more information with respect to the classical neural networks, which
are more or less Black Boxes. Since the t-norm Ty can be obtained as a limit of a family of
continuous Archimedean t-norms (see [2]), taking enough big value for this parameter we obtain
satisfactory approximation. In the Archimedean case (-norm or t—conorm) we have an additive
generator h. For example, if the activation function of the neuron u; is given by by a differentiable
function h which is induced by a t—norm or t—conorm , then for activation a,, by neuron u; we
have

5netq(£) h’(aq(f:)

sl W(D(S, k(i)

where the sum goes through all neurons u; which have connection with the neuron u;.
Pseudo-analysis is applied also on the following difference equation for given «, 8 € [a, b]

= o c’fnflm DLO cfn’nfl, k=0,1,2,..; m,n=0,£1,+2, ...

m,n

with the initial condition ¢, , =1 for n. =0, m > 0 and m = 0, n > 0 and ¢}, ,, = 0 otherwise.
For more details see [9].

3 Measures and integrals

Let X be a non-empty set. Let ¥ be a o—algebra of subsets of X.

A set function m : ¥ — [a,b]; (or semiclosed interval) is a &@—decomposable measure if there
hold m(@) =0  (if @ is not idempotent) ; m(A U B) = m(A) ® m(B) for A,B € ¥ such that
AN B = &. In the case when & is idempotent, it is possible that m is not defined on an empty
set. A ®—decomposable measure m is ¢ — ®-decomposable if

m(U A;) = @m(Ai)

hold for any sequence (4;) of pairwise disjoint sets from X. Further on, we shall suppose that m
be a 0 — @—decomposable measure and < is total order on [a, b].

Let ([a,b], ®, ®) be a semiring. ([a,b], ®) and ([a, b], ®) are complete lattice ordered semigroups.
Let interval [a,b] be endowed with a metric d compatible with sup and inf (limsupz, = z and
liminf 2,, = = imply nll)néo d(z,,z) = 0) and let the metric d satisfies at least one of the following

conditions:

(a) dz @y, 2" ®y') <d(z,2') +d(y,y")

(b) dz &y, 2" &y') < max{d(z,2'), d(y,y")}-
Both conditions imply:

A(zp,yn) >0 =  dx, Dz, yn®z) >0
We suppose that metric d is also monotonic, i.e.,
r=2z2y = d(r,y) >max{d(y,z),d(z,2)}.

Example 2 Metric with property (b) on the semiring ([—o0, +00[, max, +) is

di(z,y) = e™" —e7V |



Metric with property (b) on the semiring ([—oo, +00], max, min) is
d>(z,y) =| arctanx — arctany | .
Both metric are monotonic.

The pseudo-characteristic function of a set A is:

1 forx € A,
La(z) =
0 forxz¢gA,

where 0 is zero element for & and 1 is unit element for ®. For functions defined on X and values
in [a, b] we transfer pointwise the operations & and ©.

A mapping s : X — [a,b] is a simple function if it has the following representation s =
@D, a; ® 14,, where a; € [a,b], A; € T and if @ is not idempotent then sets A; are disjoint. An
elementary (measurable) function is mapping e : X — [a,b] that has the following representation

e:@aiQIAi, (1)
i=1

for a; € [a,b], A; € ¥,z € X and if @ is not idempotent sets A; are disjoint, when the right-hand
side of equality (1) exist.

Let f : X — [a,b] be measurable if pseudo-addition is idempotent, and if not, let f be measur-
able such that for each positive real number e exists a monotone e-net in f(X).

The construction of pseudo-integral is similar to the construction of the Lebesgue integral.

Definition 3 The pseudo-integral of a simple function s (elementary function e) with respect to
the o — ®—decomposable measure m is:

/XSde @alQm </ e®dm = @aZQm )

The pseudo-integral of a bounded measurable function f : X — [a,b], for which if ® is not idem-
potent for each € > 0 there exists a monotone e— net in f(X), is defined by:

@

@
/ f®dm = lim Yn © dm,
X n— o0 X

where {pn}ienN is the sequence of elementary functions from theorem above.
The pseudo-integral over A, when A is an arbitrary subset of X, is given by:

/A@fedm:/j(lAQf)Qdm.

Let (G,+), G C R™, where + is the coordinatewise addition.

Definition 4 The semiring B(G,[a,b]) consists in cases I) and III) (at least pseudo-addition is
idempotent) of the bounded (with respect to the order in [a,b]) functions, and in the case II)
(pseudo-addition has been represented by its additive generator g) of functions f : G — [a,b] with
property g(|f]) € L1(G) (the space Li(G) consists of Lebesgue integrable functions which satisfy
the condition [ |f(z)|dzr < +00).

All previous considerations can be transferred to the case [a,b] C R", taking care that the order
in R™ is a partial order.



4 Pseudo-convolution

4.1 Basic definitions and properties

Let G be subset of R” and * a commutative binary operation on G such that (G, %) is a cancellative
semigroup with unit element e and G4 = {z|z € G,z > e} is a subsemigroup of G. All consider-
ations can be managed also for a general topological group G. We shall consider functions whose
domain will be G. We have by [14, 15].

Definition 5 The pseudo-convolution of the first type of two functions f : G — [a,b] and h : G —
[a, b] with respect to a o — ®-decomposable measure m and x € G4 is given in the following way

D
frna) = [ o dm),

where G4 = {(u,v)|lu xv = z,v € Gy,u € Gy}, my = m in the case of sup-decomposable
measure m(A) = sup,c 4 h(x), in the case of inf-decomposable measure m(A) = inf,c 4 h(z), and
dmp = h ® dm in the case of ®-decomposable measure m, where & has an additive generator g
and g om is the Lebesque measure and f € B(G,[a,b]).

We consider also the second type of pseudo-convolution when (G, *) is a group and the pseudo-
integral is taken over whole set G:

@
frha) = [ flox (1)@ dm(o).
a
where (—t) is unique inverse element for t and xz € G.

Remark 6 When x is the usual addition on R and G = R, pseudo-convolutions of the first and
the second type, for x € RT, are

D

D
() = [ f@—1)©dma), (f*h)(l‘):/cf(x—t)®dmh(t),

[0,2]
respectively. For both types for the case II) we shall use also the notation
®
(F*h)@) = [ f@ 1) 0 h(t) dm(t).
Next definition considers cases when pseudo-addition @ is an idempotent operation.

Definition 7 Pseudo-delta function is given by

1 forx=e,
§99(z) =

0 forx#e,

where 0 is zero element for ®, 1 is unit element for ® and e is zero element for x.

We shall give some examples of pseudo integrals and related pseudo-convolutions for I-III cases.
We restrict here to the case G C R.



Example 8 In this example we shall give the form of the pseudo-convolution of the first and
the second type for some characteristic cases (the relevant semirings are the semirings that are
mentioned in the section above) and for x = + and G = R.

Case I) For the semiring ([—o0, oo, max, +) the pseudo-convolution of the first type and second
type of the functions f and h will be

(fxh)(x) = sup (f(z —t)+h(t), (f*h)(x)=sup(f(z—1)+h(t),

0<t<z teR

respectively. Unit element for this pseudo-convolutions is the following pseudo-delta function

1 (=0) ifx =0,
6max7+(x) —

0 (=—-o00) ifz#0.

We can consider in analogous way the more general semiring ([a,b], max, ®), such that ® is
non-idempotent pseudo-multiplication.
Case II) Pseudo-convolution of the first type in the sense of the g-integral (see [7, 8, 9]), i.e.,
when the pseudo-operations are represented by a generator g as z ®y = g~ '(g(x) + g(y)) and
roy =g Yg(x)g(y)), is given in the following way

gen@ = o ([ ot s -0) av.
0
Case III) For the semiring ([—oc, 00], max, min) pseudo-integral is given by

(&)
/R f © dm = sup(min(f(z), h(x))),

z€R

where the function h defines the sup-decomposable measure m. The domain of functions will be R
(or some subset of R) and the domain of the semiring is [—00, 00] ( or any subinterval). The zero
element for the @ is —oo and the unit element for the @ is +o0.

The basic properties of the generalized pseudo-convolution for an idempotent pseudo-addition
are given in the following theorem (see [13, 14]).

Theorem 9 Let F be a class of functions f such that f : G — [a,b], where (G,*) is a commutative
semigroup with unit element e. Let ® be continuous (up to some distinguished points) pseudo-
multiplication of the first or the second type on interval [a,b].

Then the pseudo-convolution of the first type (second type for G a commutative group) for the

idempotent pseudo-addition ( cases I) and III) ) is commutative, associative operation with the

unit element §9©.

Remark 10 When pseudo-addition & is max , then, we can take left continuous pseudo-multiplication
instead of continuous pseudo-multiplication.

Restricting on the case I: P = (min, +), we have * of convolution on B(G, P)

(fxh)(@) = mf (f(y) © h(z —y))-

ye



This operation turns B(G, P) into an idempotent semiring, which will be denoted by CS(G) and
referred to as the convolution semiring. Some subsemirings of C'S(G) are of interest in studying
multicriteria optimization. Namely, let L denote the hyperplane in R* determined by the equation

L= {(aj) ER:Y af = 0},
and let us define a function n € CS(L) by setting n(a) = max;(—a’). Obviously, n xn = n; that
is, n is a multiplicatively idempotent element of C'S(L). Let C'S,,(L) C C'S(L) be the subsemiring
of functions h such that n x h = hxn = h. It is easy to see that CS, (L) contains the function
identically equal to 0 = co and that the other elements of C'S,,(L) are just the functions that take
the value 0 nowhere and satisfy the inequality h(a) — h(b) < n(a—10) for all a,b € L. In particular,
for each h € C'S,, (L) we have

|h(a) = h(b)] < max|a’ — V| = |la - b]],
J

which implies that h is differentiable almost everywhere. Closely related to this convolution semir-
ing is the semiring in the following example.

Example 11 Pareto order (¢ = (a1,...,a,) < b = (b1,...,b,) if and only if a; < b; for all
i=1,...,n) defines in R} the structure of an idempotent semigroup. For any subset M C RF | by
Min(M) we denote the set of minimal elements of the closure of M in R¥. Let P(R¥) denote the
class of subsets M C R¥ whose elements are pairwise incomparable,

P(RF) = {M C RF : Min(M) = M}.
Obviously, P(R*) is a semiring with respect to the operations M; & M, = Min(M; U M) and
M, ® My = Min(M; + Ms); the neutral element 0 with respect to addition in this semiring is the
empty set, and the neutral element with respect to multiplication is the set whose sole element, is
the zero vector in R¥. The semiring P(RF) is isomorphic to the semiring of normal sets, that is,
closed subsets N C R¥ such that b € N implies @ € N for any a > b; the sum and the product
of normal sets are defined as their usual union and sum, respectively. Indeed, if N is normal,
then Min(N) € P(R*); conversely, with each M € P(RF) we can associate the normalization
Norm(M) = {a € R* |3b e M : a > b}.

It turns out that last two semirings are closely connected, as shows the following proposition that
is a specialization of a more general result given in [6].

Theorem 12 The semirings CS,(L) and P(R*) are isomorphic.

For functions with values in semirings of type II we have the following

Theorem 13 Pseudo-convolution of the first or the second type for g-case (case II) is commutative
and associative operation while G is whole set of reals and x is the usual addition on R.

4.2 Applications
4.2.1 Probabilistic metric spaces

We shall show that the basic notion of the theory of probabilistic metric spaces, the triangle
function, is based on the pseudo-convolution of the first type.
Let F, H € AT and u,v,z € [0, 00]. Taking for triangle function 7 = 77, where

mr(F, H)(x) = sup {T (F(u), H(v)) [ u+v =z},

(pseudo-convolution of the first type with respect to (max,T’) and * = +) for a left continuous
t-norm T we obtain a special important probabilistic metric space, the Menger space. The fact
that function 7r is triangle function yields from Theorem 9, see [1].



4.2.2 Fuzzy numbers

The arithmetical operations with fuzzy numbers are based on Zadeh’s extension principle (see [2]):
Let T be an arbitrary but fixed ¢~-norm and * a binary operation on R. Then the operation * is
extended to fuzzy numbers A and B by

Axr B(z) = sup T(A(z), B(y))
THRY=2
for z € R. Some usual operations with fuzzy numbers are following: Addition is obtained for * = +:
A®rB(2) = sup,,—. T(A(z), B(y)). Multiplication for x = -: A©rB(z) = sup,.,—, T(A(z), B(y)).

4.2.3 Optimization and morphism with the probability

First, we state the problem of finding the maximum of the utility function

fi(@) + fa(z2) + - + fn(zN),

on the domain D = {(x1,z2,...,zN)|x1 + 22+ - +2y =2,2; >0, i=1,..., N}
We can rewrite this problem in such manner that it represent generalized pseudo-convolution of
the first type applied on N functions. Semiring that is used for this particular problem as a range
of this pseudo-convolution is ([0, co[, max, +).

This type of problem often occurs in the mathematical economics and operation research and it
can be solved by applying the pseudo-Laplace transform, the pseudo-exchange formula and inverse
of pseudo-Laplace transform.

Definition 14 The pseudo-character of the group (G,+), G C R™ is a continuous (with respect to
the usual topology of reals) map & : G — [a,b], of the group (G,+) into the semiring ([a,b],®,®),
with property {(x +y) = {(x) ©&(y), =,y €G.

The map £ = 0 is trivial pseudo-character.

The forms of pseudo-character in the special cases can be found in [2, 14, 15]. Interesting case for
us is ([a, b], ®, ®) = ([0, oo[, max, +) and then pseudo-character has the form £(z, c) = ¢z, for each
c € R, where we have taken the dependence of the function ¢ also with respect to the parameter c.

Definition 15 The pseudo-Laplace transform LP(f) of a function f € B(G,[a,b]) is defined by

D
(8 )(E)(2) = / £z, ~2) © dmy(2),

GN[0,00[™
where £ is the pseudo-character.

When at least pseudo-addition is idempotent operation we can consider the second type of
pseudo-Laplace transform: (LPf)(£)(z) = fé? &(x,—2z) ® dmyg(x), i.e., pseudo-integral has been
taken over the whole G.

The forms of the pseudo-Laplace transform are known for three special cases and can be
found in [15]. We shall restrict to the special important case is ([0, oo[, max, +) and then pseudo-
Laplace transform has the following form (£ f)(z) = sup(—zz + f(x)), and in n-dimensional case

x>0

(LPf)(2) = supy,>0.i=1,..n(—2121 =+ - = ZpTn + f(x)). The important result that has been proved
in [15] (see [4]) is the pseudo-exchange formula, that transforms operation of generalized pseudo-
convolution of the first or second type to pseudo-multiplication: L®(f; x f2) = LP(f1) ® LP(f2),
where functions fi, f» belong to B(G, [a, D]).

In order to solve the problem from the beginning of this section we need the next theorem (see

[15])



Theorem 16 If LO(f) = F for semiring ([0, o[, max, +), then there ewxists (LP)~!, inverse of
pseudo-Laplace transform, and it has the following form: ((LP)™'(F))(z) = inf.>¢(zz + F(2)).

Now, let f(z) = maxp(fi(z1) + fo(x2) + -+ + fn(zn)). This is the pseudo-convolution of the
first type of functions fi,..., fx with respect to (max, +). Applying the pseudo-Laplace transform
(for the case ® = max and ® = +), the pseudo-exchange formula and inverse of pseudo-Laplace
transform we obtain

fz) = ((ﬁ@) B iﬁﬂa (f)) () = min (a:z + iﬁ (f) (z)> .

There is an interesting correspondence principle between probability theory and stochastic
processes on the one hand, and optimization theory and decision processes on the other hand (see
[4]). In particular, the Markov causality principle corresponds to the Bellman optimality principle.

4.3 The Riesz type theorem

The Riesz theorem in functional analysis establishes a one-to-one correspondence between con-
tinuous linear functionals on the space of continuous real functions on a locally compact space
X vanishing at infinity and regular finite Borel measures on X. Similar correspondence exists in
idempotent analysis.

We restrict here our consideration to the case of the semiring P = (min, +). Proofs, general-
izations and references could be found in [4].

All idempotent measures are absolutely continuous; i.e., any such measure can be represented
as the idempotent integral of a density function with respect to some standard measure. Let
us formulate this fact more precisely. Let Co(X,P) denote the space of continuous functions
f: X — P on alocally compact normal space X vanishing at infinity,i.e., such that for any £ > 0
there exists a compact set K C X such that p(0, f(z)) < ¢ for all z € X \ K. The topology on
Co(X, P) is defined by the uniform metric p(f,g) = supx p(f(x),g(z)). The space Co(X, P) is an
idempotent semimodule. If X is a compact set, then the semimodule Co(X, P) coincides with the
semimodule C(X, P) of all continuous functions from X to A. The homomorphisms Co(X,P) — P
will be called pseudo linear functionals on Co(X, P). The set of pseudo linear functionals will be
denoted by C§(X, P) and called the dual semimodule of Co(X, P).

Theorem 17 For any m € C§(X,P) there exists a unique lower semicontinuous and bounded
below function f: X — P such that

m(h) =inf f(z) @ h(z) V€ Co(X,P). 2)

Conversely, any function f: X — P bounded below defines an element m € C§(X,P) by (2). At
last, the functionals my, and my, coincide if and only if the functions fi and fo have the same
lower semicontinuous closures; that is, Cl fi = Cl fy, where

(CL)(z) = sup{y ()| ¢ < f, ¥ € C(X, P)}.

One can develop the concept of weak convergence and the corresponding theory of generalized
functions. For X = R", simple delta-shaped sequences can be constructed of smooth convex
functions; for example, 5?’;‘i“’+(a:) is the weak limit of the sequence f,(z) = n(z — y)%. Thus, by
virtue of the preceding, each linear functional (or operator) on Co(R™) is uniquely determined by
its values on smooth convex functions.

Let Co(R™) be the space of continuous functions f : R* — P ( P is of type I (i), IIT ) with the
property that for each e > 0 there exists a compact subset K C R™ such that d(O0, eglf\K fl@) <e,

2R



with the metric D(f, g) = sup, d(f(z), g(x)). Let C§*(R™) be the subspace of Co(R™) of functions
f with compact support suppg = {z| f(x) # 0}.

The dual semimodul (Sp(R™))* is the semimodul of continuous pseudo-linear P-valued function-
als on Sp(R™) (with respect to pointwise operations). Analogously the dual semimodul (C§°(R"))*
is the semimodul of continuous pseudo-linear P-valued functionals on C§°(R™) (with respect to
pointwise operations). The following representation theorem is a consequence of Theorem 17, see
[4] (it is also important in the theory of nonlinear PDE-[4, 12, 15]).

Theorem 18 Let f be a function defined on R® and with values in the semiring P of type I) (i)
or III) and a functional my : C§*(R™) — P is given by

@
myg(h) = / fodmy, = ir;f(f(a?) © h(x)).

Then

1) The mapping f — my is a pseudo-isomorphism of the semimodule of lower semicontinuous
functions onto the semimodule (C§°(R™))*.

2) The space C§(R™) is isometrically isomorphic with the space of bounded functions, i.e., for
every my, ,mys, € C§(R™) we have

supd(f1(z), f2(2)) = sup{d(my, (h),my, (h) : h € Co(R"), D(h, 0) < 1}.

3) The functionals my, and my, are equal if and only if Clf1 = Clfs, where
Clf(z) = sup{e(z) : o € C(R"),4 < f}.

We remark that Theorem 18 is not valid for the semimodule C(R, P) of bounded continuous
functions defined on R.

5 Some recent results

5.1 Option pricing

The famous Black-Sholes and Cox-Ross-Rubinstein (1979) formulas are basic results in the modern
theory of option pricing in financial mathematics. They are usually deduced by means of stochastic
analysis; various generalizations of these formulas were proposed using more sophisticated stochas-
tic models for common stocks pricing evolution. The systematic deterministic approach to the
option pricing leads to a different type of generalizations of Black-Sholes and Cox-Ross-Rubinstein
formulas characterized by more rough assumptions on common stocks evolution (which are there-
fore easier to verify). This approach reduces the analysis of the option pricing to the study of
certain homogeneous nonexpansive maps, which however, unlike the situations described in previ-
ous subsections, are ”strongly” infinite dimensional: they act on the spaces of functions defined on
sets, which are not (even locally) compact.

In the paper of Kolokoltsov [3] it was shown what type of generalizations of the standard
Cox-Ross-Rubinstein and Black-Sholes formulas can be obtained using the deterministic (actually
game-theoretic) approach to option pricing and what class of homogeneous nonexpansive maps
appear in these formulas, considering first a simplest model of financial market with only two
securities in discrete time, then its generalization to the case of several common stocks, and then
the continuous limit. One of the objective was to show that the infinite dimensional generalization
of the theory of homogeneous nonexpansive maps (which does not exists at the moment) would
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have direct applications to the analysis of derivative securities pricing. On the other hand, this
approach, which uses neither martingales nor stochastic equations, makes the whole apparatus of
the standard game theory appropriate for the study of option pricing.

5.2 Non-commutative and non-associative pseudo-operations

There were obtained in [16, 17] a relaxation of the properties of pseudo-addition and pseudo-
multiplication and applications of obtained results on nonlinear PDE.

Definition 19 We call real operations & and ® generalized pseudo-addition and generalized pseudo-
multiplication (from the right), respectively, if they satisfy the following conditions:

(i) ® and ® are functions from C?(R?),
(i) the equation t Dt = z for given z is uniquely solvable,
(115) © is right distributive over @ :
(Dy) (zdy)0z=(202)&@yo=2).
Changing in the previous definition in (iii) that ® is left distributive over @ :
(D) zo(xoy)=(z02)®(20y),

we obtain generalized pseudo-addition and generalized pseudo-multiplication (from the left), re-
spectively. The corresponding measure and integral were introduced in [18].

5.3 Large deviation principle

Let © be a topological space and ¥ be the algebra of its Borel sets. One says that a family of
probabilities (P.), € > 0, on (2, X) obeys the large deviation principle if there exists a rate function
I:Q — [0, 00] such that

1) I is lower semi-continuous and Q, = {w € Q : I(w) < a} is a compact set for any a < oo,

2) —limsup,_,yelog P.(C) > inf,ecc I(w) for each closed set C' C €,

3) —liminf. ,gelog P.(U) < inf, ey I(w) for each open set U C (.

Obviously m(A4) = inf,ec 4 I(w) is then a positive sigma-additive with respect to the operation
@ = min function on ¥. Therefore, it is naturally to generalize the previous definition in the
following way [19]. For any Borel set A let

P —limsupelog P.(4), P™ =lim i(1)1f elog P.(A).
£—>

e—0

One says that (P:) obeys the weak large deviation principle, if there exists a positive idempotent
measure m on ({2, X) such that

1) there exists a sequence (£2,,) of compact subsets of 2 such that m(Q25,) — 0 = +00 as n — oo,
where C¢ stands for the complimentary set of C,

2) m(C) < —P°¥(C) for each closed C C (2,

2) m(U) > —P™(U) for each open U C Q.

Using Theorem 17 and its generalizations one can prove (see details in [19]) that the large
deviation principle and its weak version are actually equivalent for some (rather general) ”good”
spaces {2. One can obtain also an interesting correspondence between the tightness conditions for
probability and idempotent measures.
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