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1 Introduction 

The “classical” engineering approach to the reality is essentially a qualitative 
and quantitative one, based on a more or less “accurate” mathematical modeling. 
In this context the elaboration of the control strategy and of the control equipment 
requires an “as accurate as possible” quantitative modeling of controlled plant 
(CP). The advanced control strategies require even the permanent reassessment of 
the models and of the parameters values characterizing these (parametric) models. 
Fuzzy control [1] is more pragmatic from this point of view by the capability to 
take over and to use a linguistic characterization of the quality of CP dynamics 
and to adapt it as function of the concrete conditions of CP operation. 

The basic FCs with dynamics have a specific nonlinear behavior accompanied by 
anticipative, derivative, integral and – more general – predictive effects and even 
of adaptation to the concrete operating conditions. The “coloring” of the linguistic 
characterization of CP evolution – based on experience – will finally be done by 
parameters by which the features of the FCs can be modified. The paper presents 
some research results in the field of development of FCs with dynamics having a 
large spectrum of applications. 

2 Typical Fuzzy Controllers with Dynamics 

2.1 Pseudo-Continuous Mathematical Characterization 

Basically the FCs are nonlinear controllers; the shape of the non-linearity can 
be modeled to a large variety of forms by the adequate choice of the variable 
parameters taking part to FC informational modules. 



By additional dynamic processing of some of system variables (by 
differentiation and / or integration), the FC can “obtain” dynamic features. The 
effects of these components can be reflected: - in permanent regimes, by the 
rejection or, from one case to another, alleviation of the control error; - in dynamic 
regimes, by improving the phase margin (in generalized sense) / reducing the 
overshoot, and reducing the settling time, and / or improving (relaxing) the stability 
conditions. 

The derivative (D) or the integral (I) components can be accomplished in both 
analog and digital version. 

The digital versions of D and I components create a quasi-continuous (Q-C) 
equivalent of the analogue D and I components, respectively. There are several 
methods for the accomplishment of Q-C D and I components, several of them 
being presented as follows. 

For the D component, the usual computation relation is: 
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If the input variable e(t) has very rapid variation which could be harmful on the 
accomplishment of the D component, then either ek is pre-filtered in terms of a 
first order delay (PT1) law, or the D component is created on the basis of the 
actual sample ek and an “old sample” ek-m. 

For the I component, a version of computation relation is: 
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Such a characterization will also permit a relative Q-C equivalence of the digital 
case. By using the first order Pàde approximation, the two components with D and 
I dynamics can be expressed as: 
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The relations (3) ensure a continuous pseudo-transfer function for the FC with 
dynamics. 

There are widely used two versions of quasi-PI fuzzy controllers (PI-FCs), the 
position type and the velocity type. The position type PI-FC can be further 
accomplished in two versions obtaining the integral component on either the 
output or the input of the FC, respectively. 

The first version of position type PI-FC is characterised by the accomplishment 
of the integral component on FC output. The basic relation of such an FC is: 
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The relation (4) characterizes a typical dependence for a PI controller. By 
expressing (4) in its operational form, the Q-C equivalent of the PI-FC is obtained: 
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Accordingly, the expression of the pseudo-transfer function can be then written as: 
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The second version of position type PI-FC is characterized by the 
accomplishment of the integral component on FC input. The basic relation of this 
controller structure is: 

∫ τ⋅τ⋅⋅+⋅⋅≈
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By expressing (7) explicitly in its operational form, the Q-C equivalent of the PI-FC 
in this version is immediately obtained: 
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The dependence (8) leads to a PI type transfer function (6), with the parameters 
obtained by the identification of all coefficients: 
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The incremental (velocity type) quasi-PI fuzzy controller can be accomplished by 
observing that differentiating (4) and using (1) will result in the form of: 
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Then the discrete time equation of the incremental PI-FC becomes: 

1221 )( −⋅⋅−⋅⋅+⋅⋅=Δ kFdkFdsFik ekkekkTkku , (11) 

where Δuk = uk – uk-1 is the increment of control signal. 



By using the presented approach there can be developed versions of quasi-PD 
fuzzy controllers (PD-FCs) and of quasi-PID fuzzy controllers (PID-FCs) [1], [2]. 
By taking into account the very good control features of the linear PI controller: 
ensuring a zero steady-state control error required by the majority of applications, 
enhancement of CS dynamics (alleviation of the settling time and of the 
overshoot) by the effect of cancellation the large time constants of CP, the positive 
practical experience gained in implementing the linear PI controller, some versions of 
PI-FCs can be developed and will be presented in the sequel. 

The usefulness of the FCs with dynamics with quasi-PI behavior is in the fact that 
they can be systematically developed, by starting from the features of a basic 
linear PI controller. 

But, the arbitrary introduction of dynamic components in the FC structure creates 
a lot of difficulties mainly concerning the interpretation of introducing the 
dynamics in control system (CS) behavior in different regimes, and the increase of 
the number of the degrees of freedom in the development and implementation of 
the controller. 

2.2 Fuzzy Controller Development and Discrete 
Implementation 

For the standard PI-FC (Section 2.1) the integral effect can be introduced: 

− on the output of the FC, the result being the standard version of the quasi-PI 
fuzzy controller with output integration (PI-FC-OI); 

− on the input of the FC, the result being the standard version of the quasi-PI 
fuzzy controller with input integration (PI-FC-II). 

The standard version of the quasi-PI fuzzy controller with integration of output / 
control signal (standard PI-FC-OI), Fig.1, is based on: 

 
Fig.1. Block diagram of standard PI-FC-OI. 

− the numerical differentiation of the control error ek under the form of the 
increment of control error: 

∗∈−=Δ − Nkeee kkk ,1 ; (12) 

− the numerical integration of the increment of control signal Δuk. 

The development and implementation of this controller starts with expressing the 
discrete equation of the PI quasi-continuous digital control algorithm (Q-C DCA) 
in its incremental (velocity type) version: 



)( kkPkIkPk eeKeKeKu ⋅α+Δ⋅=⋅+Δ⋅=Δ , (13) 

where the parameters {KP, KI, α} are functions of {kC, Ti}: 
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On the basis of the relation (14) and of the representation of Δuk in the phase plane 
< Δe, ek>, Fig.2, the pseudo-fuzzy features of the PI Q-C DCA in its incremental 
version can be highlighted: 

− there exists a “zero control signal line” Δuk = 0, having the equation: 

0=⋅α+Δ kk ee ; (15) 

− with regard to this line it is obtained that in the upper half-plane: Δuk > 0, and 
in the lower half-plane: Δuk < 0; 

− the distance from any point of the phase plane to the “zero control signal line” 
corresponds to the absolute value of the increment of control signal |Δuk |. 

 
Fig.2. Phase plane representation corresponding to (13). 

The fuzzification can be solved as follows: - for the input variables ek, Δek: there 
are chosen 5 (or more, but an odd number) linguistic terms (LTs) with regularly 
distributed triangular type membership functions (m.f.s) having an overlap of 1; - 
for the output variable Δuk there are chosen 7 LTs with regularly distributed 
singleton type m.f.s, Fig.3. 

 
Fig.3. Shapes of m.f.s for standard PI-FC-OI. 

The specific parameters of the standard PI-FC-OI are {Be, BΔe, BΔu}, and these 
strictly positive parameters are in correlation with the shapes of the membership 



functions (m.f.s) of the LTs corresponding to the input and output linguistic 
variables (LVs). The complete rule base is expressed as decision table (Table 1). 
Table 1. Decision table of standard PI-FC-OI. 

 
The main steps for tuning the parameters {Be, BΔe, BΔu} are [4]: 

− the relation (16) is valid along the “zero control signal line”: 
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− the following condition is fulfilled along the “constant control signal line”, 
Δuk=BΔu: 

ePkkPku BKeeKuB ΔΔ ⋅=⋅α+Δ⋅=Δ= )( ; (17) 

− the relation (24) results in: 

eIePu BKBKB ⋅=⋅α⋅=Δ ; (18) 

− based on his own experience, one of the parameters, for example BBe, is chosen, 
and the other two parameters, BΔe and BΔu, result from (17) and (18). 

It has to be pointed out that the parameters of the basic linear PI controller (14), kC 
and Ti, are taken into consideration in {Be, BΔe, BΔu} by applying this method for 
tuning the FC parameters. The inference method and the defuzzification method 
choice represent the user’s option. 

The obtained control signal in its incremental form Δuk can be further used in the 
CS: directly, if the actuator is of integral type / it contains pure integral component, 
or by computing the effective value of control signal according to: 

kkk uuu Δ+= − 1 . (19) 

Starting from the discrete equation of the PI Q-C DCA in its parallel version 
develops the standard PI-FC-II: 

kPkIIk eKeKu ⋅+⋅=  with , (20) kkIkI eee += − 1



where eIk represents the integral of control error computed as the sum, KI and KP 
are expressed in (14). 

By using (20), the (“position” type) control signal uk can be re-written as: 
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The structure of this FC is presented in Fig.4. 

 
Fig.4. Block diagram of standard PI-FC-II. 

The pseudo-fuzzy features pointed out before are also valid. The standard PI-FC-II 
is developed based on the analogy with the standard PI-FC-OI. This analogy 
consists in the fact that the remarks concerning the shapes of m.f.s, the decision 
table, the inference method and the defuzzification method are kept, with the 
following particular features: - the standard PI-FC-II has the input LVs ek and 
eIk with the m.f.s μe (of parameter Be) and μeI (of parameter BeI), respectively; - 
the standard PI-FC-II has the (“position” type) control signal uk as output LV. These 
particular features are updated when the rules as part of the rule base are defined. 

The structures of standard PI-FCs can give satisfaction in a lot of applications 
(control of synchronous generators and of electrical driving systems) [3], [4], [5]. 

The existence of some particular features in the dynamics of the controlled plant 
could require modifications in the controller structure; these modifications can 
deal with: - modifications in the rule base, imposed by the effective behavior of 
the controlled plant caused by some special features (for example, the non-
minimum phase character); - modifications in the fuzzification and defuzzification 
modules; it has to be correlated with the requirement concerning the modification 
of the operating point of the CP. For exemplifying this aspect, Fig.5 considers 
non-regularly distributed singleton type m.f.s for Δuk (in the case of PI-FC-OI); 
the parameters m, n and p can be imposed by different reasons. 

 
Fig.5. Non-regularly distributed output m.f.s. 



By using the above presented approach to PI-FC development, there can be also 
developed special fuzzy controllers including: - variable structure quasi-PI fuzzy 
controllers [3], - controller structures with fuzzy adaptation strategy of the 
parameters of the standard PI-FC [6], [7], [8]; - conventional controllers with 
fuzzy adaptation of parameters [3], [9], [10], [11] successfully applied to several 
applications [12], [13], [14], [15]; - PID fuzzy predictive fuzzy controllers [16], 
[17] different to the well-known approaches to fuzzy predictive control [18], [19]. 
All these versions contribute to fuzzy control system performance enhancement. 

The fuzzy controllers presented in these Sections are Mamdani ones and cen be 
considered as type II fuzzy systems in terms of [20], [21]). A similar development 
method for a Takagi-Sugeno PI fuzzy controller (TS-PI-FC, or type III fuzzy system 
[20], [21]) will be presented as follows. 

3 Fuzzy Controller Applications for Electrical Drives 

3.1 Development Methodology for a Takagi-Sugeno Fuzzy 
Controller with Dynamics 

The specific feature of the development of Takagi-Sugeno fuzzy controllers with 
dynamics is in the fact that the consequent of the rule base contains expression of 
conventional control algorithms. 

This Section deals with exemplifying the development of a TS-PI-FC with multiple 
additional functions and applying it to control of electrical drives with variable 
inertia. The fuzzy control system comprising a TS-PI-FC to be developed here – 
similarly to the Mamdani case – will be quasi-optimal in terms of quadratic 
performance indices defined in dynamic regimes with respect to the step 
modifications of the reference input (w) and of four types of disturbance inputs 
(v). 

For the development of the TS-PI-FC it is necessary to discretize the continuous 
linear PI controllers of type (14). The use of Tustin’s method results in two 
incremental PI Q-C DCAs: 

Δuk= Δuk
w= KP

wΔek+KI
wek ,  Δuk= Δuk

v= KP
vΔek+KI

vek , (23) 

where the parameters of the two incremental digital PI controllers, {KPP

w, KI
w} and 

{K v
PP , KI

v}, are computed in terms of (24): 

KP
w=kc

w(Ti
w– Ts/2), KI

w=kc
w Ts, KP

v=kc
v(Ti

v– Ts/2), KI
v=kc

v Ts, (24) 

and the fuzzy fuzzy control system (FCS) structure is a conventional one. 

The structure of the proposed TS-PI-FC is presented in Fig.5, and it consists of: 
the strictly speaking PI-fuzzy controller (PI-FC), the additional fuzzy block FB1 



for computing the current regime rk, the fuzzy block FB2 for computing the 
current status sk, and the linear blocks with dynamics. 

All three blocks {PI-FC, FB1, FB2} are Takagi-Sugeno fuzzy systems [22], use 
the max and min operators in the inference engine and employ the weighted 
average method for defuzzification. The fuzzification is done by the m.f.s from 
Fig.6 (Δwk=wk–wk-1 – increment of reference input) outlining the parameters of the 
TS-PI-FC to be determined by the development method: {BBe, BΔe, BΔw, Bs, Bw, 
BvB }. 

 
Fig.5. Structure of TS-PI-FC. 

 
Fig.6. Accepted input membership functions. 

The fuzzy block FB1 has the role of observing the dynamic regime by computing 
the variable rk. The linguistic terms “WR” and “VR” correspond to the dynamic 
regimes caused by the modification of w (wr) and v (vr), respectively. The rule 
base presented in [23] assists the inference engine of FB1. 

The fuzzy block FB2 that operates in parallel with PI-FC, computes the variable sk 
characterizing the current status of the fuzzy control system. The linguistic term 
“ZE” corresponds to an accepted steady-state regime with almost zero ek and Δek, 
and the linguistic term “P” corresponds to the situations when either ek is non-zero 
or ek is zero but it has the tendency to modify. A decision table shown in [23] 
expresses the rule base of FB2. Since FB1 and FB2 produce singleton consequents, 
these blocks can be considered as type I fuzzy systems according to [20], [21]. 

The inference engine of the strictly speaking PI-fuzzy controller (PI-FC) employs 
the rule base gathered in the decision table from Table 4. Such a decision table 
ensures a quasi-PI behavior of the PI-FC. An additional parameter α was 
introduced, α ∈ (0, 1], for the sake of FCS performance enhancement. 

The fuzzy controller development becomes more complex due to the increased 
number of fuzzy blocks. 



Concerning the computation of controller parameters, the easiest to choose are Bw 
and Bv, which have to be different in order to create a clear difference between the 
two regimes, wr and vr. This is achieved by choosing BBw = 1 and Bv = 2. The 
values of BΔw and Bs must be sufficiently small to clearly point out the constant 
values of wk, and of ek and Δek, respectively. 

If a unit step modification of w and a 2% settling time is accepted the recommended 
values for these two parameters are BΔw = 0.02 and Bs = 0.02. For the computation 
of Be and BΔe there is applied the modal equivalences principle [24] resulting in: 

BBΔe= 2TsBeB /(2Ti
m–Ts) ,   Ti

m =  (Ti
w+Ti

v)/[(βw+βv)TΣ] , (25) 

where Be is chosen in accordance with the experience of an expert in CSs. The 
relation (25) will ensure the approximate equivalence between the TS-PI-FC and the 
two linear PI controllers designed by optimizing the CS behavior with respect to w 
and four types of disturbance inputs defined in [23]. 

3.2 Application 

Take the class of plants (P) having the transfer functions expressed as: 

HP(s)=kP/[ s(1+sTΣ)]   (a)   or   HP(s)=kP/[s(1+sT1)(1+sTΣ)]   (b) (26) 

HP(s)=kP/[(1+sTΣ)(1+sT1)]  (a) or HP(s)=kP/[(1+sTΣ)(1+sT1)(1+sT2)]  (b)  (27) 

(TΣ – small time constant or time constant corresponding to the sum of parasitic time 
constants, TΣ < T2 < T1) which characterize well enough many control applications 
with electrical drives considered as controlled plants. 

The goal of the application is to develop a TS-PI-FC based on two methods for 
optimal tuning of controller parameters meant for controlling the low order 
benchmarks (26) and (27) with and without integral character. The classical 
development methods are the ESO method [25] and a modified form of it [26]. 

Focussing on the first case of the plants with the transfer functions of the forms (26) 
the use of a PI or PID controller tuned in terms of ESO method, can ensure very 
good CS performance [27]. 

In both cases, the open-loop t.f. and the closed-loop transfer function with respect to 
w have unique forms with the development parameter β chosen by the developer as 
a compromise between desired all control system performance. 

The CS performance enhancement with respect to the reference input ensured by 
the TS-PI-FC in comparison with the PI controller is illustrated in Fig.7 when 
controlling the benchmark (26), with kP=1 and TΣ=1 sec, and the controller tuned 
by means of the previous presented recommendations. The FCS performance are 
guaranteed by the development. 



 
Fig.7. y and u versus time for PI controller and TS-PI-FC. 

4 Conclusions 

The paper presents analysis aspects and research results concerning the 
development of fuzzy controllers with dynamics. 

The presentation is focussed on quasi-PI fuzzy controllers. The presented 
attractive approaches enable the development of other fuzzy controllers with 
dynamics including the quasi-PD and the quasi-PID ones. Some development 
recommendations to be directly used are offered. 

The application illustrated in the paper can correspond to the speed control of a 
separately excited DC drive, and validates the presented development methods 
and controller structures for further use in electrical drives control. 
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