
Text categorization with hierarhical category
structure

Domonkos Tikk*, Jae Dong Yang**, György Biró***, Leila
Muresan*

* Department of Telecommunications & Telematics, Budapest University of
Technology and Economics, 1117 Budapest, Magyar Tudósok Körútja 2.,
Hungary

** Department of Computer Science, Chonbuk National University, Chonju 561-
756, Korea

*** Department of Informatics, Eötvös Loránd Science University, 1117
Budapest, Pázmány sétány 1/c, Hungary

Abstract
In this paper we describe an adaptive text categorization algorithm that is able to learn
hierarchical category structures. This work was first initiated by a knowledge engineering
problem. We developed a tool that provides domain engineers with a facility to create fuzzy
relational thesauri (FRT) describing subject domains. Fuzzy thesauri have the ability to
describe a specific domain by hierarchically organized significant words (concepts or
instances) and their relationships. Creation of such structures is usually quite costly in terms
of time and hence money. To fasten this procedure we aimed at providing keywords to each
node of a hierarchy. These keywords being collected from categorized documents are very
useful as candidates to expand FRT, because domain engineers can shorten their search
time significantly when prospective candidates are offered.

For this purpose we developed a hierarchical text categorization algorithm that used the
existing FRT as starting point. Selected FRT nodes are considered to be categories. The
proposed method is basically a learning algorithm that composes of two phases:
categorization and training. When doing categorization the system infers the category of
documents, while during training the categorization ability of the system is improved based
on the previous errors by enlarging the set of descriptive words of categories.

1 Introduction
With the advent of data warehouses, the importance of text mining has been ever
increasing in the last decade. A significant subfield of text mining is text
categorization, which aims at the automatic classification of electronic documents.

Text categorization is the classification to assign a document to an appropriate
category in a predefined set of categories.

Traditionally, the document categorization has been performed manually.
However, as the number of documents explosively increases, the task becomes no
longer amenable to the manual categorization, requiring a vast amount of time and
cost. This has lead to numerous researches for automatic document classification
(see e.g. [1, 2, 3, 4]). Some of the approaches proceed very well on linear category
systems, but they are inappropriate to handle to case of multilevel categories.
However, real-world applications often pose problems with multilevel category
classification, such as sorting of e-mails and/or files into folder hierarchies,
structured search and/or browsing, etc.

This paper proposes a new method, which classifies documents on the basis of a
fuzzy relational thesaurus (FRT) [5]. For the categorization purpose, FRT is used
to describe and structure the category set. Text categorization based on FRT is
especially useful when the category set is organized in taxonomy, i.e. it has
multilevel structure.

To assign documents to categories, text categorization methods usually employ
dictionaries, each including a set of words extracted from training documents. The
assignment is made based on frequencies of occurrence of dictionary words in a
document. Conventional methods use either a large global dictionary [3, 4], local
dictionaries for each category [6] or pooled local dictionary [2]. Our method uses
two kinds of dictionaries: a global dictionary for creation of so-called expansion
sets, and local dictionaries consisting of typical words of the corresponding
categories. Each document is endowed with as many expansion sets, as many
categories the document is originally assigned to. Since an expansion set captures
keywords characterizing the category of a document to be classified, deciding
which new terms are to be inserted into FRT wholly depends on the set.

In the remaining part of the paper we introduce our FRT based text categorization
method. Its main task is to shows good performance on documents belonging to a
certain subject domain that is described by the FRT implementing the category
structure.

The core idea of the FRT based categorization is the training algorithm that
assigns weighted words (or terms) to the categories (implemented by the FRT),
and modifies weights of (word, category) and (category, category) pairs if
necessary. We start from a relatively small FRT (termed basic FRT) manually
created by a domain expert, which typically contains a few hundreds of terms. We
assume that the basic FRT contains the category names at concept level (see [7]).

We now briefly describe the training of the FRT. Primary, we use the FRT to
categorize a document. When this procedure fails due to, e.g., the small amount of
terms in the basic FRT, we use the result of an alternative (statistical) text
categorization approach in order to train FRT, and then to correct the

categorization error. Based on the original category or categories, and on some
additional information (see details later) obtained from the statistical approach,
such as, e.g., the term frequencies in the documents, we add new term(s) to FRT.
We control the expansion of the FRT by several threshold parameters. The
training algorithm is executed in an iterative way, and it ends when the
performance cannot be further improved significantly. The detailed training
algorithm is described below.

As the alternative statistical method, we use the K-nearest neighbour (KNN)
algorithm that is one of the simplest classificatory algorithms, but shows good
performance. In this actual version a document, having endowed K neighbours
from the document collection, is assigned to category c, if at least θ out of its K
neighbours are from the given category c (θ ∈N , Kθ ≤).

2 Preliminaries
Let us denote the given set of documents by D. Let W be the universal dictionary
compiled from documents D containing all the significant words of the collection.
In general, let C be the fixed finite set of categories. Each document is
classified into a subset of D. The classification can be considered as partition of
the subject domain of documents. If one document is assigned to a category
uniquely (no multiple category names are allowed) then the partition is crisp,
otherwise fuzzy. For simplicity, let us first consider the crisp case, i.e. when
documents are classified in nonempty pairwise disjoint blocks, each labelled with
the corresponding category name. If a category name is too general for the
classification purpose, we further refine the corresponding block by dividing it
into more than one sub-block together with their category names newly labelled.
Continue this process until a required refinement is reached. By means of the
described technique multiple level categorization of documents is obtained, where
categories are nested. Each category c

d D∈

C∈ has a certain level or deepness in the
categorization, which is defined recursively by the function as :Cn C → N

0, if is a top level category
()

(') 1, otherwiseC
C

c
n c

n c
⎧

= ⎨ +⎩
 (1.1)

where c is directly obtained by the partition of category . The depth of a
category set is defined as the level of the deepest category:

'c

depth() max ()c C CC n∈ c= .

If we consider fuzzy partition of the subject domain, dividing the original partition
could result in overlapped blocks. For example, consider Figure 1 where the

category ``Cassette MP3 Player’’' belongs to both of the categories ``MP3 Player’’
and ``Cassette’’. Such a situation does not change the set of categories. Instead,
the definition of category level, equation need to be modified slightly, because a
category may have more than one parent category. We hence redefine (1.1) as

' is parent of

0, if is a top level category
()

min ((') 1), otherwiseC
c c C

c
n c

n c
⎧

= ⎨ +⎩

where c is directly obtained by the partition of category ' . Due to the
construction of refinement, the top-level categories should be always pairwise
disjoint.

c

Audio

Cassette MP3 Player

Cassette
Walkman

Cassette
MP3 Player

MP3 CD
Player

Figure 1: Multiple parentcraft

The refined category set, having a tree-like structure, offers a way to connect the
categorization purpose and fuzzy relational thesauri [5]. The used FRT is
described in details in [7], where each FRT term is either concept or instance. For
the categorization purpose there is no difference between the two. We hence call
FRT terms as concepts for simplicity. Let us denote the set of FRT terms by T. We
can apply FRT based text categorization if the following condition holds: there
must exist an onto mapping :f T C→ satisfying

. The value of :! : ()c C t T f t c∀ ∈ ∃ ∈ = ()f t is ∅ for such terms t, which
do not take a part directly in the categorization. Because f is an onto mapping, its
inverse 1f − exists. As a special case, category names can be FRT names as well:

. Usually C T⊂ C T .

Analogously to (1.1) and , we can introduce the definition of level or deepness in
the FRT terminology: that determines the level of certain FRT term
in the case of crisp partition

:Tn T → N

0, if is a top level concept
()

(') 1, otherwiseT
T

t
n t

n t
⎧

= ⎨ +⎩
 (1.3)

and in the case of fuzzy partition

' is parent of

0, if is a top level concept
()

min ((') 1), otherwiseT
t t T

t
n t

n t
⎧

= ⎨ +⎩

where is the parent of concept t. For terms t having nonempty 't ()f t values:

. If not stated otherwise, we will use the terminologies concept
and category as synonyms, because the mapping f fixes their relation.

() ()(T Cn t n f t=)

For FRT based text categorization we also need to process the FRT terms
appearing in the documents. It means that three data about each document in the
collection should be stored and maintained: words and FRT terms appearing in the
document, and the categories into which it is classified. For modelling, we use the
most common representation framework, the vector space model. Three vectors
represent a document d: describes the words, the categories, and the
FRT terms of d. For the sake of better readability, the next notation uses (object,
value) pairs or (object, value, counter) triples as vector elements, but when
implementing the objects can be omitted:

dW dC dT

[]()
[]()

[]()

11 1

1 1

1 1

, , , , , , , , 0,1 ,

, , , , , , 0,1

, , , , , , 0,1

iW

d d d d d
d w w i i wW W

d d d
d i iC C

d d d
d i iT t

W w n W w n W W w n

C c C c C C c

T t T t T T t

= ∈

= ∈ ∈

= ∈ ∈

W

C

T

K

K

K

N∈ ∈

 (1.5)

iW denotes the ith word of the global dictionary, the corresponding value is

the relevance of term to the characterization of the document d, and the

number of appearance of term in document d. Analogously, denotes the ith

term of FRT term set, the corresponding value indicates the relevance of the

term to the characterization of the document d. Finally, is the ith category,

d
iw

iW
i

d
wn

iW iT
d
it

iT iC

and its weight for document d. If it is not ambiguous, the upper d indices of
frequency and counter values can be omitted. For simplicity we also use the
following sets:

d
ic

{ }
{ }
{ }

, , | 0 for words appearing in

, | 0 for FRT terms appearing in

, | 0 categories to which is assigned

id i i w i

d i i i

d i i i

W W w n w d

T T t t d

C C c c d

= ≥

= ≥

= ≥

Note that a counter value is nonzero if and only if the corresponding relevance

value, , is positive. There are numerous possible weighting schemes in the

literature to determine the values of weights . For word weights we

used the most popular is the tf×idf weighting [8], which defines in proportion

to the number of occurrence of the term in the document,

iwn

iw
, and i i iw t c

iw

iW if , and in inverse
proportion to the number of documents in the collection for which the term occurs

at least once: logi i
i

Nw f
n

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
, where the number of documents the word

 occurs. The word vectors in

in

iW (1.5) are normalized before any further processing

is done. The FRT term weights can be binary values, counters, or calculated by
a more complicated weight measure, but in our experience counters are the most
suitable choice. We remark that the significance of the selection of weights

depends on the weighting method we use for LUBS and CL based inference
methods (see section Weighting methods). Due to the fact that since FRT may
contain expressions consisting of more than one words, the word based model is
impossible to apply. Therefore when implementing, it requires different technique
from word procession. For category frequency is an appropriate choice, which
is usually binary. A document can have multiple categories or no category.

it

it

ic

3 Categorization step

3.1 Category inference method

If we intend to infer the category of a document d D∈ by means of the FRT, the
document should contain words from the FRT, i.e. the following condition should

hold: 0dT k p= ≥ , parameter determines the minimum number of

FRT terms to apply FRT categorization (usually 1). We refer to set consisting the
first member of the pairs as

0p ∈N

*
d d T

T T= . We call elements of as supporting

FRT-terms w.r.t. to a category c, if they take part in the determination of c, being
the result of categorization. When this condition is satisfied, we can use the FRT
to determine the category/ies to which the given document belongs. Based on the
set , we can infer the category/ies of document d in various ways, moreover,
these inference methods can be combined. Due to the lack of space we present
here only the best inference method.

*
dT

dT

t7 t8

t6

t4 t5

t1 t3

t2

Figure 2: Example for categorization. FRT-terms of the current document are:

{ }1 2 3 4 5,13 , ,9 , ,1 , ,1 , ,1dT t t t t t= . Meaning of notation: –

Printer; – Laser Printer; – Monitor; – Graphic Card; Sound Card;

 – Multimedia Kit; – Computer Peripheral Devices; – Computer
Components

1t

2t 3t 4t 5t

6t 7t 8t

Before we turn to the discussion of the inference method in details, we recall a
function from [7] operating on FRT terms. Function Sup calculates the
set of the operand's all super concepts (see [7, p.19]):

: 2TT →

{ }Sup(*) | * Tt t T t= ∈ ≤ t

2t
t

 (1.6)

where means that is more general term (instance or concept) than

for . By definition,
1 Tt ≤ 2t 1t

1 2,t t T∈ Tt ≤ holds for all t T∈ . Here, denotes the
power set of the set A. For brevity, Sup(is called the FRT-superset of .
Analogously, we can define FRT-subset of a term [7].

2A

*)t *t

Let us now turn to the discussion of the best method for category determination,
the Concept Level (CL) based method. This method determines the categories of a

document at each concept level separately. For each *
it Td∈ , we create its FRT-

superset by means of (1.6). As an example consider the following case depicted in
Figure 2. The actual document d contains FRT-terms : *

dT

``Printer’’, ``Laser Printer’’, ``Monitor’’ under top-level concept ``Computer
Peripheral Devices’’ (CPD), moreover ``Graphic Card’’ and ``Sound Card’’ under
top-level concept ``Computer Components’’ (CC). Then { }1 1 7Sup() ,t t t= ,

{ }2 1 2 7Sup() , ,t t t t= , { }4 4 6Sup() , ,t t t t= 8

d

, etc. We applied different

weighting methods to rank the concepts ofSup(; these are presented in section
Weighting methods. As the result of weighting, we obtain set of (term, value) pairs
for each

)it

*
it T∈ . Among them we select the final term as

{ }()
CL () , | , determined by weightingi t t

i i it t t w t T w= ∈

For the final ranking weights are cumulated, for every t and for every t
iw

*1, di T⎡∈ ⎣ ⎤⎦ , i.e. if a term t appears in more than one Sup(set, then in the

overall ranking these weights of t are added:

)it

*

() * *
CL

1

() , 1, : Sup()
dT

i t
d i d

i

t t t w i T t t
=

⎧ ⎫
⎪ ⎪⎡ ⎤= ∃ ∈ ∈⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ i (1.7)

where 0t
iw = by definition if Sup()it t∉ . When determining the category at a

certain concept level, the concept that appears at the given level with highest rank
in is selected. If there is more than one concept with the highest rank,
then all of them are selected. This selection method is similar to the voting
classification used in [2], but instead of decision trees, we evaluate FRT-supersets
of FRT terms appearing in the documents. The final categories of d are the union
of categories assigned to the selected concepts from for each concept
level.

() *
CL ()i

dt t

() *
CL ()i

dt t

If 0dT p< then the FRT is not suitable for determining the category/ies of d,

especially when . In this case, we skip the categorization of the given

document at the start. After the FRT is expanded, the cardinality of
0 1p =

dT is

increased considerably. The expansion algorithm guarantees this feature, if the
parameters are set reasonably.

3.2 Weighting methods
In order to rank the resulted concepts that were determined by CL based method
we employ weighting schemes. For every resulted concept t, the strength of
relationship, , can also be retrieved between terms (,)ir t t *

it Td∈ and t. It is
defined as

1, if
(,)

(',) (, '), otherwise
i

i
i

t t
r t t

r t t r t t
=⎧

= ⎨ ⋅⎩
 (1.8)

where is the ``next’’ term of the FRT hierarchy towards t. The weighting
schemes assign a weight to each retrieved concept by means of and .

't
(,)ir t t d

it

As we mentioned before, CL based method determines the category of a document
at each category level separately. Without the loss of generality, let us now
consider level , and let us assume that we have categories at
level l. We intend to determine to which l-level category the actual document d
belongs. The CL based method checks each Sup(set for l-level concepts, and
endows them a weight, so we obtain

depth()l ≤ C lN

)it

{ }()
CL Sup()() , | () and ()

i

i t t
i i T i tt t t w n t l w tχ= = = (1.9)

where χ is the usual characteristic function. We can use other, more
sophisticated weighting instead of χ , which takes into account the number of
appearance of a term, and/or the strength of relations connecting the element of

 and the FRT term . Reasonable alternatives are: Sup()it it

Sup()

, if Sup()
()

0, otherwisei

i it
i t

t t t
w w t

∈⎧
= = ⎨

⎩
 (1.10)

or . (1.11) Sup()

(,), if Sup()
()

0, otherwisei

i it
i t

t r t t t t
w w t

⋅ ∈⎧
= = ⎨

⎩
i

3t

Weighting scheme with expression (1.10) gives higher weights to concepts with
multiple appearances of the supporting FRT terms, but the strength of relation
between the selected concept and the FRT term is not taken into account. The
usage of (1.11) eliminates this deficiency, incorporating the latter information.

Let us investigate the example of Figure 2 for the analysis of weighting schemes
for CL method when (top-level). 0l = 7 1 2Sup(),Sup(),Sup()t t t∈ and

. We calculate the aggregated weights for and based 8 4Sup(),Sup()t t∈ 5t 7t 8t

on (1.9) using the above three weighting schemes:
7

3tw = , 23, and 19.89

according to (1.9), (1.10) and (1.11), resp.; analogously
8

2tw = , 2, and 1.62.

Regardless of the employed weighting scheme, we select as top-level concept. 7t

4 Training FRT: expansion step
In order to improve the categorization capability of FRT, we may need to check
the correctness of the selected categories and modify or insert new terms into the
FRT. Let denote the set of determined categories by KNN method for

document d, and the k nearest neighbour of

kNN
dC

()k
dN d D∈ . As preprocession for

FRT expansion, we create for each category c C∈ in an expansion set .
This can be considered as a small local dictionary that captures the key words for
given a document and category. is an ordered set of important words
appearing in d and in those of its neighbouring k documents, which belongs to
category c. is truncated to keep only the first

dC d
cE

d
cE

d
cE 1p words having at least 1α

weight. (In accordance with [5], this set is the 1 1(,)p α -level set of .) In the

following we add terms to the FRT based on expansion sets.

d
cE

d
cE

For FRT expansion we check for each document d D∈ whether its original
categories were found by FRT categorization, and whether it was assigned to
categories incorrectly.

1) Case: but (the FRT was unable to find the correct

category c). Let us consider each element w of set , and let

, the FRT term representing the category c. Check whether
the term w has been added in the expansion process to the FRT before
(note: same word(s) can appear in different sets). If not (insertion of
a new term): link word w as a new term to the FRT under the term t with
the predefined relation weight. Figure 3a depicts this situation. If the term
w has been already added to the FRT during the expansion process, while
it was linked to one of the element

dc C∈ FRT
dc C∉

d
cE

1()t f c−=

d
cE

old Sup()t t∈ (correction of a
previously added relation): delete the relation between the higher-level
concept and the term w, and add a new relation with the predefined

relation weight to the FRT between and w. This operation is
oldt

1()t f c−=

depicted on Figure 3b. Moreover, if term w has been already added to the
FRT, and it is linked under a concept that is neither in the FRT-
superset (located above) nor in the FRT-subset (located under) of t
(insertion of a new relation to an existing term): add a new relation with
the predefined relation weight to the FRT between t and w. Observe on
Figure 3c that the level of the parents of term w is not necessarily the
same.

't

2) Case: but (the category determined by the FRT is
incorrect). Modify the weights of relationships between the incorrect c
concept (category name) and those FRT terms

dc C∉ FRT
dc C∈

t T∈ , which supported
the selection of the incorrectly determined category. If is

such a relation then multiply its weight by the factor

1(),()r f c t−

2α

(()2 0,1α ∈ ⊂ R adjustable parameter).

3) Otherwise do nothing.

w w w

t told told

… …t t…

Figure 3: Insertion of a new term

Recalculate the FRT-supersets based on the new terms and modified weights, and
repeat step 1–3 until the terminal condition of the training iteration is not reached.

5 Implementation and experimental results

5.1 Document collection
Because there is no standard document corpus particularly for multi-class and
multi-label text classification test, we collected documents in the domain of
electronic appliances from the web. First we collected 211 documents, which was
augmented later, thus a 327 elements document collection was obtained. We
proceeded tests on both document sets. The dictionary consisted of 3731, and
5793 words, respectively. FRT was created by semi-automatic thesaurus
construction software [7], which allows fuzzy partition of subject domain. In our

application we use three embedded category levels, we term them topic, subtopic,
and subsubtopic, respectively.

The collected documents were classified into the following six top concepts:
Audio, Computer, Computer Components, Computer Peripheral Device, House-
Hold Appliances, Office Communications Appliances. We had 30 (31) subtopics,
and 40 (58) subsubtopics in the case of 211 (327) document set. Each category
had at least two training examples. The training documents were distributed
evenly, except the Computer Components topic that had 62 (178) documents. The
document collections, and the mapping files containing the assignment between
category names and FRT terms are available publicly at
http://ozzy.chonbuk.ac.kr under FRTcat section.

5.2 Result of the FRT categorization
We proceeded experiences with CL based inference methods to determine
categories. We proceeded in three steps. First the top-level category of a given
document was determined. In consecutive steps we searched the actual subtopic or
subsubtopic only under the already determined topic or subtopic, knowing that
categories were embedded. This directed search resulted in significantly better
performance than undirected search, which considered all the categories.

We tried all the weighting methods presented earlier in the paper. The most
sophisticated method (1.11) gave the best result. We fixed 2 0.8α = .

We intend to add only some remarks to the easily interpretable results shown in
Table 1. The speed of training is considerable faster in the first 3–4 training
iterations, usually at this stage the performance differs from the best result by only
2–3 percentage. Obviously, the number of inserted terms is much higher at this
stage of training: in the first cycle more than 500 terms can be added e.g. in the
case of 327-element document set, while later only a few tens of terms are
inserted. In general, the performance of FRT categorization is not monotone
increasing in terms of the number of iteration, it can oscillate under the optimal
value. We remark that the optimal number of neighbours for expansion set
creation is 8, although KNN gives better results with smaller values.

Table 1: Results with the 211-elements and 327-elements category set (separated
with double line)

k F-
measure

Precision Recall
1p 1α Number

of
iterations

8 0.9642 0.9818 0.9474 5 0.10 8

4 0.9587 0.9799 0.9385 5 0.10 10

8 0.9723 0.9927 0.9562 7 0.05 11

4 0.9568 0.9815 0.9333 7 0.05 12

4 0.9473 0.9823 0.9146 10 0.10 9

8 0.9434 0.9777 0.9114 10 0.10 9

8 0.9560 0.9860 0.9278 7 0.05 12

6 Conclusion
We proposed a new method for text categorization, which uses FRT to support the
classification task. The algorithm is particularly efficient if category set have
multilevel structure. In our experiments we achieved good results, around 95–97
percentage, for F-measure value. The method exploits the adaptive feature of the
local dictionaries stored in FRT. We intend to apply our method to the Reuter-
21578 benchmark data collection for comparison with conventional methods, and
to make experiments with different FRT expansion algorithms in the near future.

References
[1] D.D. Lewis, M. Ringuette: A comparison of two learning algorithms for text
classification. In The Third Annual Symposium on Document Analysis and Information
Retrieval, pp. 81–93, 1994.

[2] S.M. Weiss, C. Apte, F.J. Damerau, D.E. Johnson, F.J. Oles, T. Goetz, T. Hampp:
Maximizing text-mining performance. IEEE Intelligent Systems, 14(4) pp. 2–8, July/August
1999.

[3] Y. Yang: An evaluation of statistical approaches to text categorization. Information
Retrieval, 1(1–2), pp. 69–90, 1999.

[4] T. Joachims: Text categorization with support vector machines: Learning with many
relevant features. Technical Report, University of Dortmund, Dept. of Informatics,
Dortmund, Germany, 1997.

[5] H.L. Larsen, R.R. Yager: The use of fuzzy relational thesaurus for classificatory
problem solving in information retrieval and expert systems. IEEE Trans. on Systems, Man,
and Cybernetics, 23(1), pp. 31–40, 1993.

[6] C. Apte, F.J. Damerau, S.M. Weiss: Automated learning of decision rules for text
categorization. ACM Trans. Information Systems, 12(3), pp. 233–251, July 1994.

[7] J.H. Choi, J.J. Park, J.D. Yang, D.K. Lee: An object-based approach to managing
domain specific thesauri: semiautomatic thesaurus construction and query-based browsing.
Technical Report TR 98/11, Dept. of Computer Science, Chonbuk National University,
1998.
http://cs.chonbuk.ac.kr/~jdyang/publication/techpaper.html

http://cs.chonbuk.ac.kr/%7Ejdyang/publication/techpaper.html

	Abstract
	1 Introduction
	2 Preliminaries
	3 Categorization step
	3.1 Category inference method
	3.2 Weighting methods
	4 Training FRT: expansion step
	Figure 3: Insertion of a new term

	5 Implementation and experimental results
	5.1 Document collection
	5.2 Result of the FRT categorization

	6 Conclusion
	References

