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Abstract 
In this paper we describe an adaptive text categorization algorithm that is able to learn 
hierarchical category structures. This work was first initiated by a knowledge engineering 
problem. We developed a tool that provides domain engineers with a facility to create fuzzy 
relational thesauri (FRT) describing subject domains. Fuzzy thesauri have the ability to 
describe a specific domain by hierarchically organized significant words (concepts or 
instances) and their relationships. Creation of such structures is usually quite costly in terms 
of time and hence money. To fasten this procedure we aimed at providing keywords to each 
node of a hierarchy. These keywords being collected from categorized documents are very 
useful as candidates to expand FRT, because domain engineers can shorten their search 
time significantly when prospective candidates are offered.  

For this purpose we developed a hierarchical text categorization algorithm that used the 
existing FRT as starting point. Selected FRT nodes are considered to be categories. The 
proposed method is basically a learning algorithm that composes of two phases: 
categorization and training. When doing categorization the system infers the category of 
documents, while during training the categorization ability of the system is improved based 
on the previous errors by enlarging the set of descriptive words of categories.  

1 Introduction 
With the advent of data warehouses, the importance of text mining has been ever 
increasing in the last decade. A significant subfield of text mining is text 
categorization, which aims at the automatic classification of electronic documents. 



Text categorization is the classification to assign a document to an appropriate 
category in a predefined set of categories. 

Traditionally, the document categorization has been performed manually. 
However, as the number of documents explosively increases, the task becomes no 
longer amenable to the manual categorization, requiring a vast amount of time and 
cost. This has lead to numerous researches for automatic document classification 
(see e.g. [1, 2, 3, 4]). Some of the approaches proceed very well on linear category 
systems, but they are inappropriate to handle to case of multilevel categories. 
However, real-world applications often pose problems with multilevel category 
classification, such as sorting of e-mails and/or files into folder hierarchies, 
structured search and/or browsing, etc. 

This paper proposes a new method, which classifies documents on the basis of a 
fuzzy relational thesaurus (FRT) [5]. For the categorization purpose, FRT is used 
to describe and structure the category set. Text categorization based on FRT is 
especially useful when the category set is organized in taxonomy, i.e. it has 
multilevel structure. 

To assign documents to categories, text categorization methods usually employ 
dictionaries, each including a set of words extracted from training documents. The 
assignment is made based on frequencies of occurrence of dictionary words in a 
document. Conventional methods use either a large global dictionary [3, 4], local 
dictionaries for each category [6] or pooled local dictionary [2]. Our method uses 
two kinds of dictionaries: a global dictionary for creation of so-called expansion 
sets, and local dictionaries consisting of typical words of the corresponding 
categories. Each document is endowed with as many expansion sets, as many 
categories the document is originally assigned to. Since an expansion set captures 
keywords characterizing the category of a document to be classified, deciding 
which new terms are to be inserted into FRT wholly depends on the set. 

In the remaining part of the paper we introduce our FRT based text categorization 
method. Its main task is to shows good performance on documents belonging to a 
certain subject domain that is described by the FRT implementing the category 
structure. 

The core idea of the FRT based categorization is the training algorithm that 
assigns weighted words (or terms) to the categories (implemented by the FRT), 
and modifies weights of (word, category) and (category, category) pairs if 
necessary. We start from a relatively small FRT (termed basic FRT) manually 
created by a domain expert, which typically contains a few hundreds of terms. We 
assume that the basic FRT contains the category names at concept level (see [7]). 

We now briefly describe the training of the FRT. Primary, we use the FRT to 
categorize a document. When this procedure fails due to, e.g., the small amount of 
terms in the basic FRT, we use the result of an alternative (statistical) text 
categorization approach in order to train FRT, and then to correct the 



categorization error. Based on the original category or categories, and on some 
additional information (see details later) obtained from the statistical approach, 
such as, e.g., the term frequencies in the documents, we add new term(s) to FRT. 
We control the expansion of the FRT by several threshold parameters. The 
training algorithm is executed in an iterative way, and it ends when the 
performance cannot be further improved significantly. The detailed training 
algorithm is described below. 

As the alternative statistical method, we use the K-nearest neighbour (KNN) 
algorithm that is one of the simplest classificatory algorithms, but shows good 
performance. In this actual version a document, having endowed K neighbours 
from the document collection, is assigned to category c, if at least θ out of its K 
neighbours are from the given category c (θ ∈N , Kθ ≤ ). 

2 Preliminaries 
Let us denote the given set of documents by D. Let W be the universal dictionary 
compiled from documents D containing all the significant words of the collection. 
In general, let C be the fixed finite set of categories. Each document  is 
classified into a subset of D. The classification can be considered as partition of 
the subject domain of documents. If one document is assigned to a category 
uniquely (no multiple category names are allowed) then the partition is crisp, 
otherwise fuzzy. For simplicity, let us first consider the crisp case, i.e. when 
documents are classified in nonempty pairwise disjoint blocks, each labelled with 
the corresponding category name. If a category name is too general for the 
classification purpose, we further refine the corresponding block by dividing it 
into more than one sub-block together with their category names newly labelled. 
Continue this process until a required refinement is reached. By means of the 
described technique multiple level categorization of documents is obtained, where 
categories are nested. Each category c

d D∈

C∈ has a certain level or deepness in the 
categorization, which is defined recursively by the function as :Cn C → N

0,  if  is a top level category
( )

( ') 1,  otherwiseC
C

c
n c

n c
⎧

= ⎨ +⎩
  (1.1) 

where c is directly obtained by the partition of category . The depth of a 
category set is defined as the level of the deepest category: 

'c

depth( ) max ( )c C CC n∈ c= . 

If we consider fuzzy partition of the subject domain, dividing the original partition 
could result in overlapped blocks. For example, consider Figure 1 where the 



category ``Cassette MP3 Player’’' belongs to both of the categories ``MP3 Player’’ 
and ``Cassette’’. Such a situation does not change the set of categories. Instead, 
the definition of category level, equation need to be modified slightly, because a 
category may have more than one parent category. We hence redefine (1.1) as 

'  is parent of 

0,  if  is a top level category
( )

min ( ( ') 1),  otherwiseC
c c C

c
n c

n c
⎧

= ⎨ +⎩
  

where c is directly obtained by the partition of category ' . Due to the 
construction of refinement, the top-level categories should be always pairwise 
disjoint.  

c

Audio

Cassette MP3 Player

Cassette
Walkman

Cassette 
MP3 Player

MP3 CD
Player

 
Figure 1: Multiple parentcraft 

The refined category set, having a tree-like structure, offers a way to connect the 
categorization purpose and fuzzy relational thesauri [5]. The used FRT is 
described in details in [7], where each FRT term is either concept or instance. For 
the categorization purpose there is no difference between the two. We hence call 
FRT terms as concepts for simplicity. Let us denote the set of FRT terms by T. We 
can apply FRT based text categorization if the following condition holds: there 
must exist an onto mapping :f T C→  satisfying 

. The value of :! : ( )c C t T f t c∀ ∈ ∃ ∈ = ( )f t  is ∅  for such terms t, which 
do not take a part directly in the categorization. Because f is an onto mapping, its 
inverse 1f −  exists. As a special case, category names can be FRT names as well: 

. Usually C T⊂ C T . 



Analogously to (1.1) and , we can introduce the definition of level or deepness in 
the FRT terminology:  that determines the level of certain FRT term 
in the case of crisp partition 

:Tn T → N

0,  if  is a top level concept
( )

( ') 1,  otherwiseT
T

t
n t

n t
⎧

= ⎨ +⎩
 (1.3) 

and in the case of fuzzy partition 

' is parent of 

0,  if  is a top level concept
( )

min ( ( ') 1),  otherwiseT
t t T

t
n t

n t
⎧

= ⎨ +⎩
  

where  is the parent of concept t. For terms t having nonempty 't ( )f t values: 

. If not stated otherwise, we will use the terminologies concept 
and category as synonyms, because the mapping f fixes their relation. 

( ) ( )(T Cn t n f t= )

For FRT based text categorization we also need to process the FRT terms 
appearing in the documents. It means that three data about each document in the 
collection should be stored and maintained: words and FRT terms appearing in the 
document, and the categories into which it is classified. For modelling, we use the 
most common representation framework, the vector space model. Three vectors 
represent a document d:  describes the words,  the categories, and the 
FRT terms of d. For the sake of better readability, the next notation uses (object, 
value) pairs or (object, value, counter) triples as vector elements, but when 
implementing the objects can be omitted: 
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 (1.5) 

iW  denotes the ith word of the global dictionary, the corresponding value is 

the relevance of term  to the characterization of the document d, and  the 

number of appearance of term  in document d. Analogously,  denotes the ith 

term of FRT term set, the corresponding value indicates the relevance of the 

term  to the characterization of the document d. Finally,  is the ith category, 

d
iw

iW
i

d
wn

iW iT
d
it

iT iC



and its weight for document d. If it is not ambiguous, the upper d indices of 
frequency and counter values can be omitted. For simplicity we also use the 
following sets: 

d
ic

{ }
{ }
{ }

, , | 0  for words appearing in 

, | 0  for FRT terms appearing in 

, | 0  categories to which  is assigned

id i i w i

d i i i

d i i i

W W w n w d

T T t t d

C C c c d

= ≥

= ≥

= ≥

 

Note that a counter value is nonzero if and only if the corresponding relevance 

value, , is positive. There are numerous possible weighting schemes in the 

literature to determine the values of weights . For word weights we 

used the most popular is the tf×idf weighting [8], which defines in proportion 

to the number of occurrence of the term  in the document, 

iwn

iw
,  and i i iw t c

iw

iW if , and in inverse 
proportion to the number of documents in the collection for which the term occurs 

at least once: logi i
i

Nw f
n

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
, where  the number of documents the word 

 occurs. The word vectors in 

in

iW (1.5) are normalized before any further processing 

is done. The FRT term weights can be binary values, counters, or calculated by 
a more complicated weight measure, but in our experience counters are the most 
suitable choice. We remark that the significance of the selection of weights 

depends on the weighting method we use for LUBS and CL based inference 
methods (see section Weighting methods). Due to the fact that since FRT may 
contain expressions consisting of more than one words, the word based model is 
impossible to apply. Therefore when implementing, it requires different technique 
from word procession. For  category frequency is an appropriate choice, which 
is usually binary. A document can have multiple categories or no category. 

it

it

ic

3 Categorization step 

3.1 Category inference method 

If we intend to infer the category of a document d D∈  by means of the FRT, the 
document should contain words from the FRT, i.e. the following condition should 



hold: 0dT k p= ≥ ,  parameter determines the minimum number of 

FRT terms to apply FRT categorization (usually 1). We refer to set consisting the 
first member of the pairs as 

0p ∈N

*
d d T

T T= . We call elements of  as supporting 

FRT-terms w.r.t. to a category c, if they take part in the determination of c, being 
the result of categorization. When this condition is satisfied, we can use the FRT 
to determine the category/ies to which the given document belongs. Based on the 
set , we can infer the category/ies of document d in various ways, moreover, 
these inference methods can be combined. Due to the lack of space we present 
here only the best inference method.  

*
dT

dT
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Figure 2: Example for categorization. FRT-terms of the current document are: 

{ }1 2 3 4 5,13 , ,9 , ,1 , ,1 , ,1dT t t t t t= . Meaning of notation: – 

Printer;  – Laser Printer;  – Monitor; – Graphic Card;  Sound Card; 

 – Multimedia Kit;  – Computer Peripheral Devices;  – Computer 
Components 

1t

2t 3t 4t 5t

6t 7t 8t

 

Before we turn to the discussion of the inference method in details, we recall a 
function from [7] operating on FRT terms. Function Sup calculates the 
set of the operand's all super concepts (see [7, p.19]): 

: 2TT →

{ }Sup( *) | * Tt t T t= ∈ ≤ t

2t
t

 (1.6) 

where  means that  is more general term (instance or concept) than  

for . By definition, 
1 Tt ≤ 2t 1t

1 2,t t T∈ Tt ≤  holds for all t T∈ . Here,  denotes the 
power set of the set A. For brevity, Sup(  is called the FRT-superset of . 
Analogously, we can define FRT-subset of a term [7]. 

2A

*)t *t

Let us now turn to the discussion of the best method for category determination, 
the Concept Level (CL) based method. This method determines the categories of a 



document at each concept level separately. For each *
it Td∈ , we create its FRT-

superset by means of (1.6). As an example consider the following case depicted in 
Figure 2. The actual document d contains FRT-terms : *

dT

``Printer’’, ``Laser Printer’’, ``Monitor’’ under top-level concept ``Computer 
Peripheral Devices’’ (CPD), moreover ``Graphic Card’’ and ``Sound Card’’ under 
top-level concept ``Computer Components’’ (CC). Then { }1 1 7Sup( ) ,t t t= , 

{ }2 1 2 7Sup( ) , ,t t t t= , { }4 4 6Sup( ) , ,t t t t= 8

d

, etc. We applied different 

weighting methods to rank the concepts ofSup( ; these are presented in section 
Weighting methods. As the result of weighting, we obtain set of (term, value) pairs 
for each 

)it

*
it T∈ . Among them we select the final term as 

{ }( )
CL ( ) , | ,  determined by weightingi t t

i i it t t w t T w= ∈  

For the final ranking  weights are cumulated, for every t and for every t
iw

*1, di T⎡∈ ⎣ ⎤⎦ , i.e. if a term t appears in more than one Sup( set, then in the 

overall ranking these weights of t are added:  

)it

*

( ) * *
CL

1

( ) , 1, : Sup( )
dT

i t
d i d

i

t t t w i T t t
=

⎧ ⎫
⎪ ⎪⎡ ⎤= ∃ ∈ ∈⎨ ⎬⎣ ⎦
⎪ ⎪⎩ ⎭

∑ i  (1.7) 

where 0t
iw =  by definition if Sup( )it t∉ . When determining the category at a 

certain concept level, the concept that appears at the given level with highest rank 
in  is selected. If there is more than one concept with the highest rank, 
then all of them are selected. This selection method is similar to the voting 
classification used in [2], but instead of decision trees, we evaluate FRT-supersets 
of FRT terms appearing in the documents. The final categories of d are the union 
of categories assigned to the selected concepts from  for each concept 
level. 

( ) *
CL ( )i

dt t

( ) *
CL ( )i

dt t

If 0dT p<  then the FRT is not suitable for determining the category/ies of d, 

especially when . In this case, we skip the categorization of the given 

document at the start. After the FRT is expanded, the cardinality of 
0 1p =

dT  is 

increased considerably. The expansion algorithm guarantees this feature, if the 
parameters are set reasonably. 



3.2 Weighting methods 
In order to rank the resulted concepts that were determined by CL based method 
we employ weighting schemes. For every resulted concept t, the strength of 
relationship, , can also be retrieved between terms ( , )ir t t *

it Td∈  and t. It is 
defined as  

1,  if 
( , )

( ', ) ( , '),  otherwise
i

i
i

t t
r t t

r t t r t t
=⎧

= ⎨ ⋅⎩
 (1.8) 

where  is the ``next’’ term of the FRT hierarchy towards t. The weighting 
schemes assign a weight to each retrieved concept by means of  and . 

't
( , )ir t t d

it

As we mentioned before, CL based method determines the category of a document 
at each category level separately. Without the loss of generality, let us now 
consider level , and let us assume that we have  categories at 
level l. We intend to determine to which l-level category the actual document d 
belongs. The CL based method checks each Sup(  set for l-level concepts, and 
endows them a weight, so we obtain 

depth( )l ≤ C lN

)it

{ }( )
CL Sup( )( ) , | ( )  and ( )

i

i t t
i i T i tt t t w n t l w tχ= = =  (1.9) 

where χ  is the usual characteristic function. We can use other, more 
sophisticated weighting instead of χ , which takes into account the number of 
appearance of a term, and/or the strength of relations connecting the element of 

 and the FRT term . Reasonable alternatives are: Sup( )it it

Sup( )

,  if Sup( )
( )

0,  otherwisei

i it
i t

t t t
w w t

∈⎧
= = ⎨

⎩
 (1.10)  

or .      (1.11) Sup( )

( , ),  if Sup( )
( )

0,  otherwisei

i it
i t

t r t t t t
w w t

⋅ ∈⎧
= = ⎨

⎩
i

3t

Weighting scheme with expression (1.10) gives higher weights to concepts with 
multiple appearances of the supporting FRT terms, but the strength of relation 
between the selected concept and the FRT term is not taken into account. The 
usage of (1.11) eliminates this deficiency, incorporating the latter information. 

Let us investigate the example of Figure 2 for the analysis of weighting schemes 
for CL method when  (top-level). 0l = 7 1 2Sup( ),Sup( ),Sup( )t t t∈  and 

. We calculate the aggregated weights for  and  based 8 4Sup( ),Sup( )t t∈ 5t 7t 8t



on (1.9) using the above three weighting schemes: 
7

3tw = , 23, and 19.89 

according to (1.9), (1.10) and (1.11), resp.; analogously 
8

2tw = , 2, and 1.62. 

Regardless of the employed weighting scheme, we select  as top-level concept. 7t

4 Training FRT: expansion step 
In order to improve the categorization capability of FRT, we may need to check 
the correctness of the selected categories and modify or insert new terms into the 
FRT. Let  denote the set of determined categories by KNN method for 

document d, and  the k nearest neighbour of 

kNN
dC

( )k
dN d D∈ . As preprocession for 

FRT expansion, we create for each category c C∈  in  an expansion set . 
This can be considered as a small local dictionary that captures the key words for 
given a document and category.  is an ordered set of important words 
appearing in d and in those of its neighbouring k documents, which belongs to 
category c.  is truncated to keep only the first 

dC d
cE

d
cE

d
cE 1p  words having at least 1α  

weight. (In accordance with [5], this set is the 1 1( , )p α -level set of .) In the 

following we add terms to the FRT based on  expansion sets. 

d
cE

d
cE

For FRT expansion we check for each document d D∈  whether its original 
categories were found by FRT categorization, and whether it was assigned to 
categories incorrectly. 

1) Case: but  (the FRT was unable to find the correct 

category c). Let us consider each element w of set , and let 

, the FRT term representing the category c. Check whether 
the term w has been added in the expansion process to the FRT before 
(note: same word(s) can appear in different  sets). If not (insertion of 
a new term): link word w as a new term to the FRT under the term t with 
the predefined relation weight. Figure 3a depicts this situation. If the term 
w has been already added to the FRT during the expansion process, while 
it was linked to one of the element 

dc C∈ FRT
dc C∉

d
cE

1( )t f c−=

d
cE

old Sup( )t t∈ (correction of a 
previously added relation): delete the relation between the higher-level 
concept  and the term w, and add a new relation with the predefined 

relation weight to the FRT between and w. This operation is 
oldt

1( )t f c−=



depicted on Figure 3b. Moreover, if term w has been already added to the 
FRT, and it is linked under a concept  that is neither in the FRT-
superset (located above) nor in the FRT-subset (located under) of t 
(insertion of a new relation to an existing term): add a new relation with 
the predefined relation weight to the FRT between t and w. Observe on 
Figure 3c that the level of the parents of term w is not necessarily the 
same.  

't

2) Case: but  (the category determined by the FRT is 
incorrect). Modify the weights of relationships between the incorrect c 
concept (category name) and those FRT terms 

dc C∉ FRT
dc C∈

t T∈ , which supported 
the selection of the incorrectly determined category. If  is 

such a relation then multiply its weight by the factor 

1( ),( )r f c t−

2α  

( ( )2 0,1α ∈ ⊂ R  adjustable parameter). 

3) Otherwise do nothing. 

w w w

t told told

… …t t…

 

Figure 3: Insertion of a new term 

Recalculate the FRT-supersets based on the new terms and modified weights, and 
repeat step 1–3 until the terminal condition of the training iteration is not reached. 

5 Implementation and experimental results 

5.1 Document collection 
Because there is no standard document corpus particularly for multi-class and 
multi-label text classification test, we collected documents in the domain of 
electronic appliances from the web. First we collected 211 documents, which was 
augmented later, thus a 327 elements document collection was obtained. We 
proceeded tests on both document sets. The dictionary consisted of 3731, and 
5793 words, respectively. FRT was created by semi-automatic thesaurus 
construction software [7], which allows fuzzy partition of subject domain. In our 



application we use three embedded category levels, we term them topic, subtopic, 
and subsubtopic, respectively. 

The collected documents were classified into the following six top concepts: 
Audio, Computer, Computer Components, Computer Peripheral Device, House-
Hold Appliances, Office Communications Appliances. We had 30 (31) subtopics, 
and 40 (58) subsubtopics in the case of 211 (327) document set. Each category 
had at least two training examples. The training documents were distributed 
evenly, except the Computer Components topic that had 62 (178) documents. The 
document collections, and the mapping files containing the assignment between 
category names and FRT terms are available publicly at 
http://ozzy.chonbuk.ac.kr under FRTcat section. 

5.2 Result of the FRT categorization 
We proceeded experiences with CL based inference methods to determine 
categories. We proceeded in three steps. First the top-level category of a given 
document was determined. In consecutive steps we searched the actual subtopic or 
subsubtopic only under the already determined topic or subtopic, knowing that 
categories were embedded. This directed search resulted in significantly better 
performance than undirected search, which considered all the categories. 

We tried all the weighting methods presented earlier in the paper. The most 
sophisticated method (1.11) gave the best result. We fixed 2 0.8α = . 

We intend to add only some remarks to the easily interpretable results shown in 
Table 1. The speed of training is considerable faster in the first 3–4 training 
iterations, usually at this stage the performance differs from the best result by only 
2–3 percentage. Obviously, the number of inserted terms is much higher at this 
stage of training: in the first cycle more than 500 terms can be added e.g. in the 
case of 327-element document set, while later only a few tens of terms are 
inserted. In general, the performance of FRT categorization is not monotone 
increasing in terms of the number of iteration, it can oscillate under the optimal 
value. We remark that the optimal number of neighbours for expansion set 
creation is 8, although KNN gives better results with smaller values. 

 

Table 1: Results with the 211-elements and 327-elements category set (separated 
with double line) 

 

k F-
measure  

Precision Recall 
1p 1α  Number 

of 
iterations 



8 0.9642 0.9818 0.9474   5 0.10   8 

4 0.9587 0.9799 0.9385   5 0.10 10 

8 0.9723 0.9927 0.9562   7 0.05 11 

4 0.9568 0.9815 0.9333   7 0.05 12 

4 0.9473 0.9823 0.9146 10 0.10   9 

8 0.9434 0.9777 0.9114 10 0.10   9 

8 0.9560 0.9860 0.9278   7 0.05 12 

6 Conclusion 
We proposed a new method for text categorization, which uses FRT to support the 
classification task. The algorithm is particularly efficient if category set have 
multilevel structure. In our experiments we achieved good results, around 95–97 
percentage, for F-measure value. The method exploits the adaptive feature of the 
local dictionaries stored in FRT. We intend to apply our method to the Reuter-
21578 benchmark data collection for comparison with conventional methods, and 
to make experiments with different FRT expansion algorithms in the near future. 
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