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Abstract: Fuzzy model identification techniques are presented in this paper. The paper 
discusses how fuzzy rules from a pattern set can be extracted without human interference. 
There are several methods used for rule extraction. Some of these were inspired by 
biological evolution. Other algorithms have been developed initially for neural networks 
and can be adapted to fuzzy systems. Fuzzy clustering has also been used for rule 
extraction. The fuzzy rule interpolation method and hierarchical rule bases are introduced. 
Combining fuzzy rule interpolation with the use of hierarchically structured fuzzy rule 
bases leads to the reduction of the fuzzy algorithms’ complexity. 

1 Introduction 

In the application of fuzzy systems to modeling and control one of the most 
important tasks is to find the optimal rule base. This might be given by a human 
expert or might be given a priori by the linguistic description of the modeled 
system. If, however, neither a suitable expert, nor the necessary linguistic 
descriptions are available, the system has to be designed by other methods based 
on numerical data. In training, the objective is to tune the membership functions in 
the fuzzy system so that the system performs a desired mapping of input to output. 
Besides the extraction of rules, it is important to decrease the computational 
complexity. If a fuzzy model contains k variables and maximum T linguistic (or 
other fuzzy) terms in each dimension, the number of necessary rules is of order 
O(Tk). Decreasing T, or k, or both can decrease this expression. The first method 
leads to sparse rule bases and rule interpolation, first introduced by Kóczy and 
Hirota (see e.g. [1,2]). The second one, more effective, aims to reduce the 
dimension of the sub-rule bases (k’s) by using meta-levels or hierarchical 
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structures of fuzzy rule bases. The combination of the two was first attempted in 
[3]. 

The paper is organised as follows. Section 2 describes the bacterial algorithm. The 
Levenberg-Marquardt algorithm is shown in the Section 3. Section 4 and 5 
introduces fuzzy clustering based rule extraction technique. Fuzzy rule 
interpolation and hierarchical rule bases are presented in Section 6, 7 and 8. 
Section 9 is the conclusion of the paper. 

2 The Bacterial Algorithm 

Nature inspired some evolutionary optimisation algorithms suitable for global 
optimisation of even non-linear, high-dimensional, multimodal, and discontinuous 
problems. The original genetic algorithm (GA) was developed by Holland [4] and 
was based on the process of evolution of biological organisms. A more recent 
approach is the bacterial evolutionary algorithm (BEA). The operations of 
bacterial algorithm were inspired by the microbial evolution phenomenon.  

2.1 The Encoding Method 

The membership functions are described by four parameters with the four 
breakpoints of the trapezium. Moreover the membership functions are identified 
by the two indices i and j. So, an input membership function Aij belongs to the ith 
rule and the jth input variable and has four parameters: aij,bij,cij,dij. An output 
membership function BBi belongs to the i  rule and its parameters are: ath

i,bi,ci,di. 

The encoding method of a fuzzy system with two inputs and one output can be 
seen in [6]. An individual (bacterium) consists of the parameters of the 
corresponding fuzzy rule base. 

2.2 The Algorithm 

2.2.1 Generating The Initial Population 

First the initial (random) bacteria population is created. The population consists of 
n chromosomes (bacteria). This means that all membership functions in the 
chromosomes must be randomly initialised. The initial number of rules in one 
chromosome is Nmax. So, n(k+1)Nmax membership functions are created, where k is 
the number of input variables in the given problem. 



2.2.2 Bacterial Mutation 

The bacterial mutation is applied to each chromosome one by one [5]. First, m - 1 
copies (clones) of the rule base are generated. Then a certain part of the 
chromosome [5] is randomly selected and the parameters of this selected part are 
randomly changed in each clone (mutation). Next all the clones and the original 
bacterium are evaluated by an error criterion. The best individual transfers the 
mutated part into the other individuals. This cycle is repeated for the remaining 
parts, until all parts of the chromosome have been mutated and tested. At the end 
the best rule base is kept and the remaining m - 1 are discharged.  

2.2.3 Gene Transfer 

The gene transfer operation allows the recombination of genetic information 
between two bacteria. 

1. First the population must be devided into two halves. The better bacteria are 
called superior half, the other bacteria are called inferior half [5]. 

2. One bacterium is randomly chosen from the superior half, this will be the 
source bacterium, and another is randomly chosen from the inferior half, this will 
be the destination bacterium. 

3. A “good” part from the source bacterium is chosen and this part can overwrite a 
not-so-good part of the destination bacterium or simple be added [5].  

 4. 1, 2, and 3 are repeated for times, where is the number of 
“infections” per generation [5]. 

infN infN

2.2.4 Stop Condition 

If the population satisfies a stop condition or the maximum generation number is 
reached then the algorithm ends, otherwise it returns to the bacterial mutation step. 

3 The Levenberg-Marquardt Algorithm 

There are other identification methods, which have been originally applied to train 
neural networks. One of the most successful neural networks training algorithm, 
the Levenberg-Marquardt algorithm [8] is discussed in this section. Optimal rule 
base means that the distances between the targets and the corresponding output 
vector gives smaller error than in the case of another rule base. The error is 
measured by the following function: 
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where P is the number of patterns in the pattern set, t(p) is the pth target vector, y(p) 
is the pth output vector. The most used method to minimise (1) is the Error-Back-
Propagation (BP) algorithm, which is a steepest descent algorithm. A newer 
method is the Levenberg-Marquardt algorithm. Denoting the parameter vector by 
z, and the Jacobean matrix by J : 
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In (3), α  is a regularization parameter, which controls the both the search 
direction and the magnitude of the update. (3) can be recast as [9]: 
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The complexity of this operation is of ( )3O n , where n is the number of columns 

of J .  

If we apply this algorithm in fuzzy systems then the parameters z must be found. 
The structure of the fuzzy system is the following: 

A grid in the input space is defined. Vectors of knots must be defined, one for each 
input dimension. These vectors determine the place of the membership functions. 
In each axis thi ji ,λ  will be defined, where irj ,...,1,0= . They are arranged in 

such a way that 

iriii ,1,0, ... λλλ ≤≤≤  (5) 

0,iλ is the minimal and 
iri ,λ is the maximal value of the  input.  thi



Each output can be defined also by four parameters: in the 4,3,2,1, ,,, rrrr νννν
thr rule. The task is to find the location of each λ and ν parameter. This can be 

solved by the Jacobean computation which is described in [9] and for fuzzy 
systems in [7].   

4 Clustering-Based Rule Extraction Technique 

Recently, clustering-based approaches have been proposed for rule extraction [10, 
11].  Most of the techniques use the idea of partitioning the input space into fixed 
regions to form the antecedents of the fuzzy rules.  Although these techniques 
have the advantage of efficiency, they may lead to the creation of a dense rule-
base that suffers from rule explosion.  In general, the number of rules generated is 
td where d is the number of input dimensions and t is the terms per input.  In this 
case, the number of rules generated grows exponentially with the increase of input 
dimensions.  Due to this reason, the techniques are not suited for generating fuzzy 
rule-bases that have a large number of input dimensions. 

Among the rule extraction techniques proposed in the literature, Sugeno and 
Yasukawa’s [12] technique (abbreviated as SY method hereafter) is one of the 
earliest works that emphasize the generation of a sparse rule-base.  The SY 
approach clusters only the output data and induces the rules by computing the 
projections to the input domains of the cylindrical extensions of the fuzzy clusters.  
This way, the method produces only the necessary number of rules for the input-
output sample data (more details later).  The paper [12] discusses the proposed 
technique at the methodological level leaving out some implementation details.  
The SY technique was further examined in [16] where additional readily 
implementable techniques are propose to complete the modeling methodology. 

In the first step of SY modelling, the Regularity criterion [13] is used to assist in 
the identification of ‘true’ input variables that have significant influence on the 
output.  The input variables that have less or no influence on the output are 
ignored for the rest of the process.  The true input variables are then used in the 
actual rule extraction process.  The rule extraction process starts with the 
determinition of the partition of the output space.  This is done by using fuzzy c-
means clustering [14] (see section 5).   
For each output fuzzy cluster Bi resulting from the fuzzy c-means clustering, a 
cluster in the input space Ai can be induced.  The input cluster can be projected 
onto the various input dimensions to produce rules of the form: 

 If x1 is Ai1 and x2 is Ai2 and … xn is Ain then y is Bi



5 Fuzzy C-Means Clustering 

Given a set of data, Fuzzy c-Means clustering (FCMC) performs clustering by 
iteratively searching for a set of fuzzy partitions and the associated cluster centers 
that represent the structure of the data as best as possible.  The FCMC algorithm 
relies on the user to specify the number of clusters present in the set of data to be 
clustered.  Given the number of cluster c, FCMC partitions the data X = 
{x1,x2,…,xn} into c fuzzy partitions by minimizing the within group sum of 
squared error objective function as follows (6). 
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where Jm(U,V) is the sum of squared error for the set of fuzzy clusters represented 
by the membership matrix U, and the associated set of cluster centers V.  ||.|| is 
some inner product-induced norm.  In the formula, ||xk – vi||2 represents the 
distance between the data xk and the cluster center vi.  The squared error is used as 
a performance index that measures the weighted sum of distances between cluster 
centers and elements in the corresponding fuzzy clusters.  The number m governs 
the influence of membership grades in the performance index.  The partition 
becomes fuzzier with increasing m and it is proven that the FCMC algorithm 
converges for any m ∈ (1,∞).  The necessary conditions for (6) to reach its 
minimum are 
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In each iteration of the FCMC algorithm, matrix U is computed using (7) and the 
associated cluster centers are computed as (8).  This is followed by computing the 
square error in (6).  The algorithm stops when either the error is below a certain 
tolerance value or its improvement over the previous iteration is below a certain 
threshold. 



The FCMC algorithm cannot be used in situations where the number of clusters in 
a set of data is not known in advance.  Since the introduction of FCMC, a 
reasonable amount of work has been done on finding the optimal number of 
cluster in a set of data.  This is referred to as the cluster validity problem.  The 
optimal number of clusters are determined by means of a criterion, known as the 
cluster validity index.  Sugeno and Fukuyama proposed the following cluster 
validitiy index in [15]. 
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where n is the number of data points to be clustered; c is the number of clusters; xk 
is the kth data, x is the average of data; vi is the ith

 cluster center; Uik is the 
membership degree of the kth data with respect to the ith cluster and m is the fuzzy 
exponent.  The number of clusters, c, is determined so that S(c) reaches a local 
minimum as c increases.  The terms || xk - vi || and || vi- x || represent the variance 
in each cluster and variance between clusters respectively.  Therefore, the optimal 
number of clusters is found by minimizing the distance between data to the 
corresponding cluster center and maximizes the distance between data in different 
clusters.  Other cluster validity indexes can be found in [17]. 

6 Fuzzy Rule Interpolation 

In the following sections two complexity reduction techniques will be presented: 
the fuzzy rule interpolation and the use of hierarchical rule bases. In these sections 
we shall use the vector representation of fuzzy sets, which assigns a vector of its 
characteristic points to every fuzzy set. The representation of the piecewise linear 
fuzzy set A will be denoted by vector a = [a-m ,...,a0 ,...,an], where ak  (k ∈ [-m,n]) 
are the characteristic points of A and a0 is the reference point of A having 
membership degree one. A partial ordering among CNF fuzzy sets (convex and 
normal fuzzy sets) is defined as: BA p  if kk ba ≤ (k ∈ [-m,n]). 

The basic idea of fuzzy rule interpolation (KH-interpolation) is formulated in the 
Fundamental Equation of Rule Interpolation 
(FERI): . ),(:),(),(:),( 2
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In this equation and *A *B denote the observation and the corresponding 
conclusion, while 222211 , BARBAR →=→=  are the rules to be interpolated, such 
that  and . If in some sense D denotes the Euclidean distance 
between two symbols, the solution for results in simple linear interpolation. If 
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=  (the fuzzy distance family), linear interpolation between corresponding 
α -cuts is performed and the generated conclusion can be computed as below, (as 
it is first described in [3]): 
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where the first index (1 or 2) represents the number of the rule, while the second - 
k - the corresponding α-cut. From now on we shall consider yxyxd −=),( , 

so that (10) becomes: , where 

 (for the left and right side respectively). 
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7 Hierarchical Fuzzy Rule Bases 

The input space mXXXX ×××= ...21 can be decomposed, so that some of its 

components, e.g. pXXXZ ×××= ...210  determine a subspace of X (p < m), so 

that in a partition can be determined: . 0Z },...,,{ 21 nDDD=Π 0
1

ZD
n

i
i =

=
U

In each element of Π, i.e. , a sub-rule base  can be constructed with local 
validity. In the worst case, each sub-rule base refers to exactly 

. The complexity of the whole rule base is not 

decreased, as the size of is , and each , i > 0, is of order 

. 
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A way to decrease the complexity would be finding in each a proper subset of iD
}...{ 1 mp XX ××+ , so that each  contains only less than m-p input variables. 

The task is of finding such a partition is often difficult, if not impossible, 
(sometimes such partition does not even exist). 

iR

There are cases when, locally, some variables unambiguously dominate the 
behaviour of the system, and consequently the omission of the other variables 
allows an acceptably accurate approximation. The bordering regions of the local 



domains might not be crisp or even worse, these domains overlap. For example, 
there is a region , where the proper subspace  dominates, and another 

region , where another proper subspace  is sufficient for the description of 

the system, however, in the region between  and  all variables in 

 play a significant role (

1D 1Z

2D 2Z

1D 2D
][ 21 ZZ × ][ ⋅×⋅  denoting the space that contains all 

variable that occur in either argument within the brackets). In this case, sparse 
fuzzy partitions can be used, so that in each element of the partition a proper 
subset of the remaining input state variables is identified as exclusively dominant. 
Such a sparse fuzzy partition can be described as follows:  

and  in the proper sense (fuzzy partition). Even 

is possible (sparse partition). If the fuzzy partition chosen is 

informative enough concerning the behaviour of the system, it is possible to 
interpolate its model among the elements of 

},...,,{ˆ
21 nDDD=Π

0
1

)( ZDCore
n

i
i ⊂

=
U

0
1

)( ZDSupp
n

i
i ⊂

=
U

Π̂ , as we shall see below. 

Each element  will determine a sub-rule base referring to another subset of 

variables. The technical difficulty is how to combine the ”sub-conclusions”   

with the help of  into the final conclusion.  

iD iR
*
iB

0R

E.g., let us assume that the fuzzy partition has only two elements: , 

and that ,i.e.,  and have no common component 

.Consequently, 

},{ˆ
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2121 ][ ZZZZ ×=× 1Z 2Z

iX 210 ZZZX ××= . The rule base will have the following 
structure: 

0R :  If is then use  0z 1D 1R

  If is then use  0z 2D 2R

1R :  If is then y is   :  If is then y is   1z 11A 11B 2R 2z 21A 21B

        If is then y is    If is then y is  1z 12A 12B 2z 22A 22B

 …     … 

        If is then y is   If is then y is  1z
1r1A

1r1B 2z
2r2A

2r2B



8 Hierarchical Rule Bases And Fuzzy Interpolation 

Let us assume that the observation on X is and its projections are: 
, , . Using the Fundamental 

Equation, the two sub-conclusions, obtained from the two sub-rule bases  and 

 are: 
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(The superscript shows the reference to the rule base and .) 1R 2R

Finally, by substituting the sub-conclusions into the meta-rule base we get: 
*20*10* )1( kkkkk
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The steps of the algorithm are the following : 

1. Determine the projection  of the observation  to the subspace of the 

fuzzy  partition . Find the interpolating rules. 

*
0A *A

Π̂

2. Determine . 0
kλ

3. For each  determine  the projection of  to . Find the interpolating 

rules in each . 
iR *

iA *A iZ

iR

4. Determine the sub-conclusions for each sub-rule base . iR

5. Using the sub-conclusions from step 4, compute the final conclusion according 
to (11). 

9 Conclusion 

Fuzzy model identification methods were described in this paper. Each algorithm 
has advantages and disadvantages too. The Levenberg-Marquardt algorithm often 
finds only the local minimum in the optimisation process. The bacterial algorithm 
can avoid the local minima, but this method gives just a quasi-optimal result. The 
clustering based rule extraction techniques have the advantage of being 
computationally efficient. The interpolation in hierarchical rule bases reduces the 
computational complexity. One of the drawbacks of this method is that it often 



results in abnormal conclusions, so the hierarchical structures are impossible to 
use. 
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