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Abstract: It is discussed that the monotony of an operation is a necessary 
requirement only in that case if there exists a neutral element, hence we omit the 
axiom of monotony in case of operations without neutral element. Absorbing-
norms are not necesseraly monotone operations with an absorbing element. The 
papers summariezes the definition and the structure of absorbing-norms. 
Distance-based operations are examles that such kind of operations can be 
obtained from a practical approach. 
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1 Introduction 

The applications of Computational Intelligent techniques strongly relay on the 
integration of membership values representing uncertain information. Since the 
pioneering work of Lotfi A. Zadeh the basic research was oriented towards the 
investigation of the properties of t-operators and also to find new ones satisfying 
the axiom system. As a result of this a great number (of various type) of t-
operators have been introduced accepting the axiom system as a fixed, 
unchangeable skeleton. 

Recently for the generalization of t-operators the concept of uninorms was 
introduced by Yager and Rybalov [8], and their structure was described by Fador 
et. al. and De Baets [2]. They also studied the functional equations of Frank and 
Alsina for two classes of commutative, associative and increasing binary 
operators. The first one is the class of uninorms, while the second one is the class 
of nullnorms. 

In this paper the generalization of nullnorms is discussed. The idea is based on the 
distance-based operators introduced by Rudas [7]. As it is summarized in Chapter 
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6.2 the maximum distance operators are uninorms, while the minimum distance 
operators have absorbing elements but they are not monotone mappings. This 
property suggested the examination of axiom system of t-operators from the point 
of view of monotony. It is shown that there is strong relation between monotony 
and the existence of the neutral element, i. e. if there exists a neutral element then 
the operation should be non-decreasing. However this result suggests that if an 
operator has an absorbing element instead of neutral element than the monotony is 
not a “natural” requirement, and it can be omitted from the definition. 

After the brief summary of uninorms and nullnorms the definition and the basic 
properties some absorbing norms are defined. It is shown that suitable pairs 
formed from uninorms and absorbing norms satisfy the absorption and 
distributivity laws. Finally the structure and construction of absorbing norms are 
discussed. 

In the second part of the paper the distance-based operators as typical examples of 
absorbing and uninorms are summarized. 

2 Uninorms and Nullnorms 

Uninorms are such kind of generations of t-norms and t-conorms where the neutral 
element can be any number from the unit interval. The class of uninorms seems to 
play an important role both in theory and application [10], [2], [4]. 

Definition 1  [10] A uninorm U is a commutative, associative and increasing 
binary operator with a neutral element [ ]1,0∈e , i.e. ( ) [ ]1,0 ,, ∈∀= xxexU . 

The neutral element e is clearly unique. The case e = 1 leads to t-conorm and the 
case e = 0 leads to t-norm.  

The first uninorms were given by Yager and Rybalov [10]  
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cU  is a conjunctive right-continuous uninorm and  is a disjunctive left-
continuous uninorm. 

dU

Regarding the duality of uninorms Yager and Rybalov have proved the following 
theorem [10]. 



Theorem 1  Assume U is a uninorm with identity element e, then 
)1,1(1),( yxUyxU −−−=  is also a uninorm with neutral element e−1 . 

Definition 2  [2] A mapping [0,1][0,1][0,1]: →×U  nullnorm, if there exists an 
absorbing element , i. e., [ ]1,0∈a ( ) [ ]1,0 ,, ∈∀= xaaxV , V is commutative, V is 
associative, non-decreasing and satisfies 

 ( ) [ ]axxxV  ,0 allfor  0, ∈=  (3) 

 ( ) [ ]1 , allfor  1, axxxV ∈=  (4) 

The Frank equation was studied by Calvo, De Baets, and Fodor in case of 
uninorms and nullnorms, and they found the followings. 

3 Monotony 

From an algebraic point of view t-norms and t-conorms are semigroup operations 
on the domain  with the neutral element 1 and 0, respectively. By 
investigating their axiom skeletons the axiom of monotony is a revealing property, 
i. e. it is not a usual axiom in defining algebraic structures. Hence natural 
questions can be arisen: Why monotony is included in the axiom system? Is it 
independent from the other axioms? 

[0,1][0,1] ×

Most books on fuzzy logic explain it as a natural requirement: “a decrease in the 
degree of membership in the fuzzy sets cannot produce an increase in the degree 
of the membership in their intersection and union.” This seems to be a logical 
explanation but not an exact answer. 

As it is shown in the followings there is strong relation between monotony and 
the existence of the neutral element, i. e. if there exists a neutral element then the 
monotony is a necessary property. The discussion is based on the work L. Fuchs 
[5].  

Definition 3  Let f be an operation of A. f satisfies the monotony low with 
monotony domain C, where C is non-empty and if   ,AC ⊆

1.  whenever ( ) Cxxxf n ∈,...,, 21 Cxxx n ∈,...,, 21 ,  

2. for each i (i = 1,...,n), f is either monotone decreasing or monotone 
increasing or both in the variable Cxi ∈ . 

If none of the  variables are both monotone increasing and decreasing then f is 
called non-degenerate. 
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There is a strong relation between monotony and the existence of neutral 
element. 

Proposition 2  Let f be a binary operation with a neutral element e. Then f is 
monotone increasing in both variables in any monotony domain containing e. 

Proof.  If  then 21 xx < ( ) ( ) ( ) ( )222111 ,,,, xefexfxxxefexf ==<== .  

Corollary 1  In the axiom systems of t-norms and t-conorms the axiom of 
monotony is not independent from the others, so it can be omitted. 

Corollary 2  If f has no neutral element the property of monotony does not 
implied. 

The following proposition shows the relation between associative property and 
monotony. 

Proposition 3  Let f is an associative binary operation defined in A. If 
 is non-degenerate then f is monotone increasing in both 

variables in any monotony domain C. 

( ) ( )( zyxffzyxg ,,,, = )
2 1  xandx

Proof.  On the contrary let us suppose that ( )yxf ,  is monotone decreasing in x. 

If  then  and 21 xx ≤ ( ) ( yxfyxf ,, 21 ≥ )
( ) ( )( ) ( ) ( )( )zyxffzyxgzyxffzyxg ,,,,,,,, 2211 =≤= ,  

hence g is monotone increasing in x. 

On the other hand f is associative so ( ) ( )( ) ( )( )zyfxfzyxffzyxg ,,,,,, ==  so 
by the assumption g should be monotone decreasing in x, which is a 
contradiction. 

The same argument applies for y.  

4 Absorbing-Norms 

Definition 4  Let A be a mapping  [0,1][0,1][0,1] : →×A . A is an absorbing-
norm, if for all  satisfies the following axioms: ]1,0[,, ∈zyx
A1.a  There exists an absorbing element [ ]1,0∈a , i. e., ( ) [ ]1,0 ,, ∈∀= xaaxA . 
A1.b  A(x,y) = A(y,x) that is, A is commutative, 
A1.c  A(A(x,y),z) = A(x,A(y,z)) that is, A is associative, 

It is clear that a is an idempotent element ( )  ,, aaaA = hence the absorbing 
element is unique. If there would exist at least two absorbing elements 



2121 , , , aaaa ≠  for which ( ) ( ) 221121 ,  and  ,, aaaAaaaA == , so thus 

 21, aa =

T-operators are special absorbing-operators, namely for any t-norm T, 
( ) [ ]0,1x ,0,0 ∈∀=xT  and for any t-conorm S, ( ) [ ]0,1x ,1,1 ∈∀=xS . 

As a direct consequence of the definition we have  

if ax ≤  then ( ) ( )axaaxA ,max, == , if  then ax ≥ ( ) ( )axaaxA ,min, == . 

These properties provide the background to define some simple absorbing-norms. 

Theorem 1  The trivial absorbing-norm [ ] [ ] [ ]0,10,10,1 : →×TA  with absorbing 
element a is  

 ( ) ( ) [ ] [ ]1,01,0yx, ,yx, : ×∈∀→ aAT . (5) 

Proof.  The statement is obvious from the definition.  
Theorem 2  The mapping [ ] [ ] [ ]0,10,10,1 :min →×A  defined as 

 ( ) ( ) ( ) [ ] [ ]
( )⎩

⎨
⎧ ×∈

=
elsewhere,min

,0,0, if,,max
,min yx

aayxyx
yxA  (6) 

and the mapping [ ] [ ] [ ]0,10,10,1 :max →×A  defined as 

 ( ) ( ) ( ) [ ] [ ]
( )⎩

⎨
⎧ ×∈

=
elsewhere,,max

1 ,1 ,, if,,min
,max yx

aayxyx
yxA  (7) 

are absorbing-norms with absorbing element a. 

Proof. 

Commutativity.  It follows from the definitions of the operators. 

Assocoativity.  We have to prove that ( )( ) ( )( )zyAxAzyxAA ,,,, minminminmin = . 

Without loss of generality we can assume that . zyx ≥≥

 Suppose first that za ≤ . Then 

( )( ) ( zzyAzyxAA ) == ,,, minminmin  and ( )( ) ( ) zzxAzyAxA == ,,, minminmin . 

 Suppose now xa ≥ . In this case ( )( ) ( ) xzxAzyxAA == ,,, minminmin  and 

( )( ) ( xyxAzyAxA ) == ,,, minminmin . 

 Suppose .  zyax ≥≥≥



( )( ) ( zzyAzyxAA ) == ,,, minminmin  and ( )( ) ( ) zzxAzyAxA == ,,, minminmin . 

 Suppose . zayx ≥≥≥

( )( ) ( zzyAzyxAA ) == ,,, minminmin  and ( )( ) ( ) zzxAzyAxA == ,,, minminmin . 

We have to prove that ( )( ) ( )( )zyAxAzyxAA ,,,, maxmaxmaxmax = . 

Assume again . Since  and  are equal to each other in the 
domains  and 

zyx ≥≥ minA maxA
[ ] [ aa ,0,0 × ] [ ] [ ]1 ,1 , aa ×  the cases za ≤  and hold for , 

too. 
xa ≥ maxA

 Suppose now that . zyax ≥≥≥ ( )( ) ( ) xzxAzyxAA == ,,, maxmaxmax  and 

( )( ) ( xyxAzyAxA ) == ,,, maxmaxmax . 

 Suppose . zayx ≥≥≥ ( )( ) ( ) yzyAzyxAA miax == ,,,maxmax  and 

( )( ) ( yyxAzyAxA ) == ,,, maxmaxmax . 

Absorbing element. 

If  then ax ≤ ( ) ( ) aaxaxA == ,max,min , If  then ax ≥ ( ) ( ) aaxaxA == ,min,min ,  

and the same are true for .   maxA

With the combination of , .and  further absorbing-norms can be 
defined. 

minA maxA TA

Theorem 3  The mapping [ ] [ ] [ ]0,10,10,1 :min →×aA  defined as  

 ( ) ( ) [ ] [ ]
( )⎩

⎨
⎧ ×∈

=
elsewhere,,min

,0,0, if,
,min yx

aayxa
yxAa  (8) 

and the mapping [ ] [ ] [ ]0,10,10,1 :max →×aA  defined as 

 ( ) ( ) [ ] [ ]
( )⎩

⎨
⎧ ×∈

=
elsewhere,,max

1 ,1 ,, if,
,max yx

aayxa
yxAa  (9) 

are absorbing-norms with absorbing element a. 

Proof.  

Commutativity.  It follows from the definitions of the operators. 

Assocoativity. 

We have to prove that ( )( ) ( )( )zyAxAzyxAA aaaa ,,,, minminminmin = .  



Wihout loss of generality we can assume that . zyx ≥≥

 Suppose first that za ≤ . Then ( )( ) ( ) zzyAzyxAA aaa == ,,, minminmin  and 

( )( ) ( ) zzxAzyAxA aaa == ,,, minminmin . 

 Suppose now xa ≥ . In this case ( )( ) ( ) azaAzyxAA aaa == ,,, minminmin  and 

( )( ) ( ) aaxAzyAxA aaa == ,,, minminmin . 

 Suppose . zyax ≥≥≥ ( )( ) ( ) azyAzyxAA aaa == ,,, minminmin  and 

( )( ) ( ) aaxAzyAxA aaa == ,,, minminmin . 

 Suppose . zayx ≥≥≥ ( )( ) ( ) zzyAzyxAA aaa == ,,, minminmin  and 

( )( ) ( ) zzxAzyAxA aaa == ,,, minminmin . 

We have to prove that. ( )( ) ( )( )zyAxAzyxAA aaaa ,,,, maxmaxmaxmax =  

Assume again  and suppose  first that zyx ≥≥ za ≤ . Then 

 and ( )( ) ( ) azaAzyxAA aaa == ,,, maxmaxmax ( )( ) ( ) aaxAzyAxA aaa == ,,, maxmaxmax . 

 Suppose now xa ≥ . In this case ( )( ) ( ) xzxAzyxAA aaa == ,,, maxmaxmax  and 

( )( ) ( ) xyxAzyAxA aaa == ,,, maxmaxmax . 

 Suppose now that .  zyax ≥≥≥ ( )( ) ( ) xzxAzyxAA aaa == ,,, maxmaxmax  and 

( )( ) ( ) xyxAzyAxA aaa == ,,, maxmaxmax . 

 Suppose . zayx ≥≥≥ ( )( ) ( ) azaAzyxAA aaa == ,,, maxmaxmax  and 

( )( ) ( ) ayxAzyAxA aaa == ,,, maxmaxmax . 

Absorbingl element. 

If  then , and ax ≤ ( ) aaxAa =,min

if  then ax ≥ ( ) ( ) aaxaxAa == ,min,min . 

If  then , and if  then ax ≤ ( ) aaxaxAa == ),max(,max ax ≥ ( ) aaxAa =,max .     

Theorem 4  Assume that A is an absorbing-norm with absorbing element a. The 
dual operator of A defined as ( ) ( )yxAyxA −−−= 1,11,  is an absorbing-norm 
with absorbing element 1-a. 



Proof.  

Commutativity: follows from the commutativity of A. 

Associativity: 

( )( ) ( )( ) ( )( ) ( )( ) =−−−−=−−−−=−−−= zyxAAzyAxAzyAxAzyAxA 1,1,111,1,111,11,,,
( )( ) ( )( )zyxAAzyxAA ,,1,,11 =−−−=  

Absorbing element:  

( ) ( ) aaxAaxA −=−−=− 1,111, .   

Let us define a kind of complements of  and .by replacing in the 
definitions the operator min with max and the max with min as follows. 

minA maxA

Definition 5 

 ( ) ( ) ( ) ( ) [ ] [ ]
( )⎩

⎨
⎧ ×∈

=
elsewhere,max

,0,0, if,,min
,

max
min yx

aayxyx
yxA  (10) 

 ( ) ( ) ( ) ( ) [ ] [ ]
( )⎩

⎨
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We have received the first uninorms given by Yager and Rybalov 

 ( ) ( ) ( yxAyxU c ,,
max

max= ) , (12) 

 ( ) ( ) ( yxAyxU d ,,
max

min= ) . (13) 

Due to the constructions of these operators for the pairs ( )dUA  ,min  and 
 the laws of absorption and distributivity are fulfilled. ( cUA  ,max )

Theorem 5  For the pairs  and ( )dUA  ,min ( )cUA  ,max  the following hold 

1. Absorption laws 

 ( )( ) [ ] 1,0  allfor   ,,min ∈= xxxzxUA d , (14) 

 ( )( ) [ ] 1,0  allfor   ,,min ∈= xxxzxAU d , (15) 

 ( )( ) [ ] 1,0  allfor   ,,max ∈= xxxzxUA c , (16) 

 ( )( ) [ ] 1,0  allfor   ,,max ∈= xxxzxAU c . (17) 



2. Laws of distributivity 

 ( )( ) ( ) ( )( ) [ ] 1,0  allfor   ,,, ,, minminmin ∈= xzxAyxAUzyUxA dd , (18) 

 ( )( ) ( ) ( )( ) [ ] 1,0  allfor   ,,, ,, minmin ∈= xzxUyxUAzyAxU ddd , (19) 

 ( )( ) ( ) ( )( ) [ ] 1,0  allfor   ,,, ,, maxmaxmax ∈= xzxAyxAUzyUxA cc , (20) 

 ( )( ) ( ) ( )( ) [ ] 1,0  allfor   ,,, ,, maxmax ∈= xzxUyxUAzyAxU ccc . (21) 

Proof.  In each disjunctive sub-domain of the unit square the pairs are defined as 
min and max or max and min operators for which these properties hold.   

5 The structure of absorbing-norms 

Like uninorms the structure of absorbing-norms is closely related to t-norms and t-
conorms on the domains [ ] [ ]aa ,0,0 ×  and [ ] [ ]1,1, aa × . 

Following the construction given by Fodor, Yager and Rybalov [4] for uninorms 
any t-norm T can be transformed to an absorbing-norm on [ ] [ ]1,1, aa ×  in the 
following manner. 

Definition 6  Let T be any t-norm and define 

 ( ) ( ) ⎟
⎠
⎞

⎜
⎝
⎛

−
−

−
−

−+=
a
ay

a
axTaayxTA 1

,
1

1,   1, ≤≤ yxa . (22) 

It is easy to see that  has the properties of t-norms, and it is also an absorbing 
norm with absorbing element a. 

AT

In a similar manner any t-conorm can be transformed to an absorbing-norm. 

Definition 7  Let S be any t-conorm and define 

 ( ) ⎟
⎠
⎞

⎜
⎝
⎛=

a
y

a
xaSyxS A ,,    if ayx ≤≤ ,0  (23) 

AS  has the properties of t-conorms, and it is also an absorbing norm with 
absorbing element a. 

Theorem 6  Let be S and T a t-conorm and a t-norm, respectively. The mapping 
[ ] [ ] [0,10,10,1 :min →×STA ]   
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=
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and the mapping [ ] [ ] [ ]0,10,10,1 :max →×STA   

 ( )
( ) ( ) [ ] [ ]
( ) ( ) [ ] [ ]

( )⎪
⎩

⎪
⎨

⎧
×∈
×∈

=
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1,1,, if,,
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aayxyxS
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A
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are absorbing-norms with absorbing element a. 

Proof.  

Commutativity.  It follows from the definitions of the operators. 

Assocoativity. 

On the domains [ ]  and [ aa ,0,0 × ] [ ] [ ]1 ,1 , aa ×   inherit the properties 
of  and , so associativity is fulfilled. 

STST AA maxmin  and 

AS AT

Consider the rest of the unit square. The following inequalities hold: 

 ( ) ( ) ( ) [ ] [ ]aaaaxSyxS AA  ,0 ,0yx,  if  ,, ×∈=≤  (26) 

 ( ) ( ) ( ) [ ] [ ]1 ,1 ,yx,  if  ,, aayxTaxTa AA ×∈≤=  (27) 

a) First we have to prove that ( )( ) ( )( )zyAxAzyxAA STSTSTST ,,,, minminminmin = .  

 Suppose . zyax ≥≥≥ ( )( ) ( ) ( zySzyAzyxAA A
STSTST ,,,, minminmin == ) . 

( )( ) ( )( ) ( )zySzySxAzyAxA AA
STSTST ,,,,, minminmin ==  since ( ) azyS A ≤,  and 

( ) xzyS A ≤, . 

 Suppose . zayx ≥≥≥ ( )( ) ( )( ) zzyxTAzyxAA A
STSTST == ,,,, minminmin  

since  and ( ) ayxTA ≥, ( )( ) ( ) zzxAzyAxA STSTST == ,,, minminmin . 

b) ( )( ) ( )( )zyAxAzyxAA aaaa ,,,, maxmaxmaxmax =  should be proved. 

 Assume . zyax ≥≥≥ ( )( ) ( ) xzxAzyxAA STSTST == ,,, maxmaxmax  

and ( )( ) ( )( ) xzySxAzyAxA A
STSTST == ,,,, maxmaxmax  since ( ) azyS A ≤, . 



 Suppose now . zayx ≥≥≥

( )( ) ( )( ) ( )yxTzyxTAzyxAA AA
STSTST ,,,,, maxmaxmax ==  since ( ) ayxTA ≥,  and 

( )( ) ( ) ( )yxTyxAzyAxA A
STSTST ,,,, maxmaxmax == .  

2) Absorbing element. It is satisfied by the assumptions of the theorem.   

AT  and  are called the underlying t-norm and t-conorm of the absorbing-
norms, respectively. 

AS

It is simple to prove that if A is a nullnorm then by the inversion of formulas (22), 
(23) t-norm and t-conorm are obtained.  

Proposition 4  If A is a given nullnorm, then 

 ( ) ( ayaxA
a

yxS ,1, = )    if   ayx ≤≤ ,0 , (28) 

 ( ) ( ) ( )( )
a

ayxaaAyxT
−

−+−+
=

1
a-1a ,1,   1, ≤≤ yxa . (29) 

are t-norm and t-conorm, respectively. 

As the structure of the defined absorbing-norms show, they are constructed from t-
norms and t-conorms, so from the point of view of monotony, these are partially 
monotone mappings on the unit square, i. e. the monotony is fulfilled on the sub-
domains of [ ] [ ]1,01,0 × . Hence for further investigation it can be assumed that A is 
non-decreasing on the sub-domains [ ] [ ]1 ,,0 aa ×  and [ ] [ ]aa ,01 , × . This implies 
that on these domains  

 ( ) ( ) ( )yxyxAyx ,max,,min ≤≤ . (30) 

Analogously to the results of Fodor et al. [4] in uninorms it is possible to introduce 
the weakest and strangest absorbing-norms. 

Theorem 7  The mapping [ ] [ ] [ ]0,10,10,1 : →×WA   
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,
yx
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and the mapping [ ] [ ] [ ]0,10,10,1 : →×SA   
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are the weakest and strongest absorbing-norms, respectively, i. e. for any 
absorbing-norm A the following inequality holds:  

 ( ) ( ) ( )yxAyxAyxA SW ,,, ≤≤ . (33) 

Proof.  By using the weakest t-norm and the strongest t-conorm in definitions 
given by (22) and (23) and the inequality (33) the statement follows.   

The structure of the weakest and the strongest absorbing norms are illustrated in 
Figures 5, 6. 

6 Distance-Based Operations 

Let e be an arbitrary element of the closed unit interval [0,1] and denote by 
 the distance of two elements x and y of [0,1]. The idea of definitions of 

distance-based operators is generated from the reformulation of the definition of 
the min and max operators as follows 

( yxd , )

( ) ( )
( ) ( )
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⎨
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⎨
⎧

>
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=
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0,0, if,

),min(
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ydxdx

yx , 

Definition 8  The maximum distance minimum operator with respect to  
is defined as 

[ ]1,0∈e

 
( ) ( )
( ) ( )

( ) ( ) (⎪
⎩

⎪
⎨

⎧

=
<
>

=
eydexdyx
eydexdy
eydexdx

yxe

,, if,,min
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Definition 9  The maximum distance maximum operator with respect to  
is defined as 

[ ]1,0∈e
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Definition 10  The minimum distance minimum operator with respect to  
is defined as 

[ ]1,0∈e
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⎩

⎪
⎨

⎧

=
>
<

=
eydexdyx
eydexdy
eydexdx

yxe

,, if,,min
,, if,
,, if,

),(min min

)
. (36) 

Definition 11  The minimum distance maximum operator with respect to 
 is defined as [ ]1,0∈e

 
( ) ( )
( ) (

( ) ( ) (⎪
⎩

⎪
⎨

⎧

=
>
<

=
eydexdyx
eydexdy
eydexdx

yxe

,, if,,max
,, if,
,, if,

),(min max )
)
. (37) 

6.1 The structure of distance-based operators 

It can be proved by simple computation that the distance-based evolutionary 
operators can be expressed by means of the min and max operators as follows. 

 
( )
( )
( )⎪

⎩

⎪
⎨

⎧

=
−<
−>

=
e-xyyx

xeyyx
xeyyx

e

2 if,,min
2 if,,min
2 if,,max

max min  (38) 
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( )⎪

⎩

⎪
⎨

⎧

=
−<
−>

=
e-xyyx

xeyyx
xeyyx

e

2 if,,min
2 if,,max
2 if,,min

min min  (39) 
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( )⎪

⎩

⎪
⎨

⎧

=
−<
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=
e-xyyx

xeyyx
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e

2 if,,max
2 if,,min
2 if,,max

max max  (40) 
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( )⎪

⎩

⎪
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⎧

=
−<
−>

=
e-xyyx

xeyyx
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e

2 if,,max
2 if,,max
2 if,,min

min max  (41) 



6.2 Properties of Distance-based Operators 

Theorem 8  The distance-based operators have the following properties (Rudas 
[7]) 

minmax e  

• ( ) [ ] 1 ,0 x,=xx,max min ∈∀xe , that is  is idempotent, minmax e

• ( ) xxe =e,max min  that is, e is the neutral element,  

• is commutative and associative, minmax e

• is left continuous, minmax e

• is increasing on each place of minmax e [ ] [ ]1,01,0 × . 

maxmax e  

• ( ) [ ] 1 ,0 x,=xx,max max ∈∀xe , that is  is idempotent, maxmax e

• ( ) xxe =e,max max  that is, e is the neutral element,  

• is commutative and associative,  maxmax e

• is right continuous, maxmax e

• is increasing on each place of maxmax e [ ] [ ]1,01,0 × . 

minmin e  

• ( ) [ ] 1 ,0 x,=xx,min min ∈∀xe , that is  is idempotent, minmin e

• ( ) exe =e,min min  that is, e is an absorbing element,  

• is right continuous, minmin e

• is commutative and associative. minmin e

maxmin e  

• ( ) [ ] 1 ,0 x,=xx,min max ∈∀xe , that is  is idempotent, maxmin e

• ( ) e=e,min max xe  that is, e is the absorbing element,  

• is left continuous, maxmin e



• is commutative and associative. maxmin e

Corollary 3 

•  and  are uninorms, minmax e
maxmax e

•  and  are absorbing-norms. minmin e
maxmin e

Corollary 4 

a) The dual operators of the uninorm  is , and minmax e
max
1max e−

b) the dual operators of the uninorm  is . maxmax e
min
1max e−

If  leads to the entropy based operators introduced by Rudas and Kaynak 
[

5.0=e
8] 

Proposition 5  The pairs ( , ) and ( , ) satisfy the 
absorption laws  

 maxmin
e  min max

e  min min
e  maxmax

e

 ( )( ) [ ]1,0 ,,,maxmin minmax ∈∀= xxxyxee , (42) 

 ( )( ) [ ]1,0 ,,,minmax maxmin ∈∀= xxxyxee , (43) 

 ( )( ) [ ]1,0 ,,,minmax minmax ∈∀= xxxyxee , (44) 

 ( )( ) [ ]1,0 ,,,maxmin maxmin ∈∀= xxxyxee . (45) 

6.3 Distance-based Operators as Parametric Evolutionary 
Operators 

The min and max operators ss special cases of distance-based operators can be 
obtained depending on e as follows: 

a) if e = 0 then  

 ( )yxyx ,max),(max min
0 = , (46) 

 ( )yxyx ,max),(max max
0 = , (47) 

 ( )yxyx ,min),(min min
0 = , (48) 

 ( )yxyx ,min),(min max
0 = , (49) 



b) if e = 1 then 

 ( )yxyx ,min),(max min
1 = , (50) 

 ( )yxyx ,min),(maxmax
1 = , (51) 

 ( )yxyx ,max),(min min
1 = , (52) 

 ( )yxyx ,max),(min max
1 = . (53) 

This means that the distance-based operators form a parametric family with 
parameter e. They are also evolutionary types in the sense that if for example in 
case of  while e is increasing starting from zero till e = 1 the max operator 
is developing into the min operator. 

minmaxe

Conclusions 

In this paper a new type of operation, called Absorbing-norm is introduced. It is a 
non necesseraly monotone operations with an absorbing element. It is shown that 
absorbing-norsm are kind of complements of uninorms and together fulfill the 
laws of absorption and distributivity. Distance-based evolutionary operators are 
given as examples of absorbing and uninorms. 
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