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Abstract: Task execution in multi-agents systems might require cooperation among 
agents. An agent coalition is a special kind of cooperation, whose purpose is to improve 
the collective performance. Since creating coalitions requires complicated negotiations 
among participating agents, this paper suggests other approach, which tries to avoid this 
dilemma by using approximated values to find an optimal coalition configuration (CC). 
This method is realizable even the number of agents is large and allows predicting a range 
where a value of the optimal solution could be.    

1   Introduction 

In manufacturing or other application field cooperation among autonomous agents 
might be necessary in order to fulfil the designed aim. Let us take an example 
where a number of agents (factories), each of them owns a number of equivalent 
machines and has to satisfy any order. Of course, as an autonomous agent (fac-
tory), the assigned task could be satisfied without interventions or helps of other 
ones. But the use of machines might not be as effective as each agent can expect. 
Some agents might have too busy plan, on the other hand, some other ones might 
have idle machines. Joining a coalition in such a case can improve all agents’ per-
formance. If agents share machines and sets of tasks that each of them has to do, 
then it is possible to find a better manner to fulfil the assigned goals (faster, 
cheaper, more profits, etc.). This paper tends to find a method how to choose 
agents to distribute to such coalitions, in order to improve the collective perform-
ance. 

This paper is a continuation of two previous ones [1], [2] which dealt with the 
same topic too. Two methods merging agents and linear regression were proposed 
for finding a sub-optimal coalition configuration in these works. These methods 
require knowing all rewards that each agent can get when it joins any coalition 
before starting a process of solving. Of course, that requirement is difficult being 
satisfied, when agents have complicated payoff functions and time available to 



finish all processes of negotiation is limited. The novelty presented here is that. 
Instead of realistic values agents exploit approximated ones to find optimal coali-
tion configuration (CC). Clearly, a solution achieved by this method might not be 
the actually optimal one, but we will try to estimate the difference between them. 

2   Formulation of the problem solving 

Firstly, Let us introduce some remarks: {Agent_Set} ={A1, A2, …, An}denotes a 
set of n agents, and I denotes a set of their index, I={1,..,n}. A remark i∈ I means 
agent Ai from set Agent_Set; K⊆ I denotes a subset created by the agents from set 
Agent_Set with index belonging to set K. The next assumption is:  

Assumption 1: each agent takes part in one and only one coalition. 
Further notations are: ∀ i∈ I, K⊆ I,    
− The agent’s reward fi| i=1,..,n is a function mapping from a set of all possible 

plans that the agent can apply to +ℜ . It is used to assess the agent’s perform-
ance. 

− *
iq ≥0 denotes a reward for agent Ai if it works alone, 

− K
iq ≥0 denotes a reward for agent Ai if it joins coalition K, 

− if  = *
iq  if agent Ai works alone, or K

iq if agent Ai joins coalition K. 

− KF denotes the total reward for agent's coalition K⊆ I and it is defined as fol-
lows: 

∑
∈

=
Ki

iK fF  (1) 

In order to show how complicated calculation of values *
iq and K

iq  is we should 
take a simple example, which was used in [3] for illustration. 

Example 1: Given two producers (agents) I=[1,2]; each of them owns two different 
resources that are used to perform certain kinds of products. Operations could be 
executed in the equivalent resources of an arbitrary agent and with the same qual-
ity.   

 
 
 
 

 
 

 



Fig. 1: Initial plans agent A1 and A2 

 

In Figure1 there are initial plans that each agent has to perform. Slots with same 
pattern are operations of one product and they must be executed one after other as 
in these plans. Another assumptions are: Cost(transport) between A1 and A2 is 1$ 
and Time_tran(∆) between them is 1 unit time where ∆ is any operation. The agent 
A1 agrees with payment in interval [2,6] $ and the agent A2 is agreeable to pay 
from interval [0,5] $. For both the agents the following condition is valid: if each 
product is terminated before a time 15 units, agent gets 15$, if after this time gets 
5$ (deadline for all products is 15 time units). 

Figure 1 shows that, A1 has two different products and it is able to terminate before 
deadline (the total payoff is 30$); *

1q =30. Agent A2 has four products but one 
product is terminated after deadline (at time 16) therefore it gets only (3*15+5=) 
50$; *

2q =50; and wants to ask agent A1 to help. If both agents exchange whole 
plans, then they may agree with such plans as shown in the following figure. 

Fig. 2: A new plan for agents 

In that case, for a coalition K={1,2}, the agent’s expected utility is: q1
{1,2}=32, 

q2
{1,2}=56 and the coalition outcome is F{1,2}=88.  

The plans shown in Figure 2 achieve the best reward for collective performance of 
a coalition K={1,2}, not for each individual agent. It is easy to recognize that there 



are various ways to create new plans with different rewards. Moreover, if payoff 
functions are more complicated, a negotiation process might take much more time 
than the process of searching for an optimal CC. That fact motivates us to ap-
proximate rewards that agents can get to avoid complicated negotiations among 
them. 

3 Evaluation of coalitions by approximated value 

Let qk
i| k=1,…,n be the approximated reward that agent Ai can receive when joins an 

arbitrary coalition with (k-1) other agents. If all values qK
i|K⊆ I are known, then this 

variable could be calculated as follows: 

∀ k∈ [1,n], then, k
iq = ∑

=⊆∀ kKwhereIK

K
i

k

q
m ||,

1
         

(2) 

where mk is a number of all coalitions consisted of k members including agent Ai: 

mk= )
1
1

(
−
−

k
n

. This variable expresses the average reward that agent Ai can obtain 

in k-member coalitions. For general case, Equation (2) could be rewritten as: 
k
iq =E( K

iq ||K|=k). Estimates of E( K
iq ) could be made even if some values K

iq are 
unknown. Instead of trying all coalitions of the same size, each agent can take a 
small subset of them and calculates how much it can get in such coalitions. After 
that, an agent can make an estimate of E( K

iq ) by using an appropriate combina-

tion of already identified values K
iq . However that is not the main objective of 

this paper. We assume that exist a method to get these approximated values, which 
are then applicable to find an optimal CC. 
Let set I be decomposed to m disjoint coalitions as follows: 

I=�
m

i
iK

1=

and  ∀ i ≠j ∈ [1,m]: Ki ∩Kj={∅ }. |Ki|=ki and n=∑
=

m

i
ik

1

 (3) 

Then, by combination with Equation (1) we can get: 
E(FI)=E(∑∑

∈i i

i

K Kj

K
jq )=∑∑

∈i i

i

K Kj

K
jqE )( =∑∑

∈i i

i

K Kj

k
jq  (4) 

Since variables K
jq |∀ j, K have the same distribution. Therefore, a variance of FI 

could be calculated as follows: 
Var(FI)=Var(∑∑

∈i i

i

K Kj

K
jq )=∑∑

∈i i

i

K Kj

K
jqVar )(  (5) 

Combination of both the average value and the maximal variance allows predicting 
the range of a value of the optimal solution (e.g. using approximation method with 



the maximal credibility). Now, the main goal is to find such a configuration of set I 
as shown in Equation (3), which maximizes value E(FI) defined by Equation (4). 
The final solution is a CC, which has the highest expected reward among all. 

4 Searching for the optimal coalition configuration 
with approximated values 

In this section we present a generic method for resolving the introduced task 
above. Let consider an arbitrary configuration consisted of m coalitions with 

k1,…,km members respectively, n=∑
=

m

i
ik

1

. Theoretically, a number of such configu-

rations are: 

∆ =
!*!*...

!

1 mkk
n

, if k1 ≠ k2 ≠…≠ km, or (6) 

'∆ =
)!(..)!(

!

11
α
αα

α krkr
n
××

,  if ∑
=

α

1i
ir =m and (7) 

≠=== )(.. 11 1

αkkk r ≠=== ++ )(.. 21 211

αkkk rrr )(... α
αkkm == . (8) 

Proof of Equations (6-8) could be achieved by using standard combinational 
methods. That means agents necessarily examine ∆  (or '∆ ) different configura-
tions with the same structure (a number of coalitions and sums of members in each 
coalition). But a lot of configurations can be omitted by using an appropriate 
method to reduce and as a result the practical number of cases that agents need to 
examine is not as high as the theoretical ones. To reduce useless configurations, I 
introduce the following definition. 

Definition 1: Let each agent use the approximated values defined by Equation (2) 
and let be n=k1+ k2 +..+ km, where ki are integer. Then, a configuration I=∪ Ki| 
i=1,..,m, where each coalition Ki| i=1,...,m consists of ki members, is stable if and only if 
each attempt to exchange two agents in two different coalitions will decrease or 
achieve the same value E(FI).  

The final solution that maximizes E(FI), of course is one of these stable CC. 
Therefore, the focus now is to find a stable CC, when a sum of coalitions and 
numbers of members included in them are known. 

Given a number of coalitions m and numbers of members in each coalition k1,…,km  
(n=k1+ k2+ …+km). Let consider the first case when k1,…,km are different. Without 
loss of generality assume that k1 > k2 >…> km and K1, …,Km are m disjoint coali-
tions consist of k1,…,km members respectively, which create a stable configuration. 
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From Definition 1 it infers that, if both the agents i∈ K1 and j∈ K2 are exchanged, 
value E(FI) will not increase. That means: 

∀ i∈ K1, j∈ K2: 21 k
j

k
i qq + ≥ 21 k

i
k
j qq +  

⇔ 21 k
i

k
i qq − ≥ 21 k

j
k
j qq −  

(9) 

Similarly, it is possible to get: 
∀ i∈ K3, j∈ K4: 43 k

j
k
i qq + ≥ 43 k

i
k
j qq +  

⇔ 43 k
i

k
i qq − ≥ 43 k

j
k
j qq −  

(10) 

Etc. Equation (9) could be explained by the words as follows. If all the agents are 
sorted according to value ( 21 k

i
k
i qq − ),i∈ I, from the largest to the smallest one, 

then the agents in coalition K2 cannot be before the agents belonging to K1 (an 
example is shown in Figure 3).  

Fig. 3: An agent’s order according to ( 21 k
i

k
i qq − ). 

It might be possible to happen a situation as shown in Figure 4, where r1 agents (r2 
from K1 and (r1-r2) from K2, respectively) have the same value 21 k

i
k
i qq −  

(r1>r2>0). In this case, a number of stable configurations could be more by ex-
changing these r1 agents from one coalition to the second, but value E(FI) remains 
unchanged. Therefore to get value E(FI) it suffices to examine one of these con-
figurations. The similar conclusion could be made for agents from K3, …, Km. 
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Fig. 4: A special case when r2 agents from K1 and (r1 - r2) agents from K2 have the 
same value ( 21 k

i
k
i qq − ). 

 
On the basis of the above explanation the following algorithm for finding stable 
coalition configurations when coalitions have different dimensions is proposed. 
Greedy Algorithm for finding a stable CC – Special case (GAS): 
Input: m, k1,…,km, (k1 > k2 >…> km).  

Output: a stable coalition configuration that maximizes E(FI). 
1. 1=j . 
2. Choose (k2j-1 + k2j) arbitrary agents from the unselected ones. 

3. Classify the selected agents according to value ( jj k
i

k
i qq 212 −− ), start with the 

largest one. 
4. Distribute k2j-1 first members in this queue to coalition K2j-1, the remained ones 

to coalition K2j. 
5. Indicate the selected agents (I=I\(K2j-1∪ K2j)), j=j+1; and return to step 2 until 

][ 2
mj = .  

6. If ][ 2
mj = , calculate value E(FI) of the obtained configuration and to compare 

it with the best current one. Return to step 1.  

GAS shows a definite way to create coalitions to achieve stable configurations (in 
Step 4). As a result the overall configurations necessary to examine is reduced to 
many times. We will discuss more in the next section. 
By similar way we can propose the method to find a stable CC, when coalitions 
have arbitrary sizes, even more coalitions can have the same size. Due to the short 
framework of this paper we will show only an algorithm without detail explana-
tion.  
Greedy Algorithm for finding a stable CC – General case (GAG): 
Input: m, mkk ,...,1 , (

1
...1 rkk == ≠

211
...1 rrr kk ++ == ≠…=

αrrk ++...1
). Denote:  



α
11

kkr = ,.., α
ββ

kk rr =++..1
, ,.., α

αα
kk rr =++..1

, and 
α
1K = i

ri
K

1,..,1=
� , …, α

αK = i
rrrri

K
αα +++++= − ..,...,1.. 111

� . 
(11) 

And let us assume that r1
α
1k ≥ r2 

α
2k ≥….≥rα α

αk . 
Output: stable coalition configurations that maximize E(FI). 
1. j=1. 
2. Choose (r2j-1 

α
12 −jk +r2j )2

α
jk arbitrary agents from the unselected ones. 

3. Classify the selected agents according to value (
αα

jj k
i

k
i qq 212 −− ), starting with 

the largest. 
4. Distribute r2j-1 

α
12 −jk  first members in this queue to r2j-1 coalitions included 

in α
12 −jK , the remained ones to r2j coalitions those create α

jK2 . 

5. Indicate the selected agents (I=I\( α
12 −jK ∪ α

jK2 )), j=j+1 and return to step 2 

until ][ 2
α=j .  

6. If ][ 2
α=j , to calculate value E(FI) of the obtained configuration and to 

compare it with the best current one. Return to step 1. 

On the basis of two proposed algorithms for finding a stable CC, we suggest the 
following method to find a CC that maximizes a value E(FI). This algorithm con-
sists of three following phases: 
An Algorithm for finding an optimal CC with Approximated Values - (AAV): 
Input: n, nk

ni
k
iq ,..,1

,..,1| =
=  (the average values that agents can get). 

Output: The coalition configurations that maximize E(FI). 
•  Phase 1: Decompose n to smaller integer numbers: n=k1 +k2 + ..+km. 
•  Phase 2: For each variant, using GAS or GAG to find a stable CC. 
•  Phase 3: Choosing one of the achieved configurations that maximizes 

E(FI) for the optimal solution.  

To ensure that the AAV is a realizable method, in the next section we will show 
some simulation results with real values. 

5 Simulation results and discussion 

To verify how the AAV works we have made a number of experiments with real 
values. In these experiments the total number of agents was selected from 8 to 12 
and values of an expected utility that each agent can get in any coalition were 



generated randomly from interval [0,100]. On the basis of values of an expected 
utility each agent can calculate the average utility that it can get when joins any 
coalition of size from 1 to n. The AAV is applied to find a configuration that has a 
maximal value E(FI). Simultaneously, with the same data we try to find a maximal 
value of FI. The purpose of these experiments is to show out how many configura-
tions the AAV has to examine to achieve a value max(E(FI)) in comparison with 
the total number of all configurations that agents need to examine, in order to get a 
maximal value of FI. Of course, it is a worth to show the total utility FI of the CC 
corresponding to a value max(E(FI)), in comparison with value max(FI). A pro-
gram is made in C++ and for one computer. Results of simulation are shown in 
following tables. 

Remark: In these tables, Max E(FI) is a maximal value of E(FI), FI is a value of 
the actual CC corresponding to a value max(E(FI)). Column “% of Max(Fi)” ex-
presses a ratio between a value FI of the achieved solution and max(FI) in percent-
ages. In columns “nc E(FI)” and “nc FI” there are a number of configurations that a 
program has to examine in order to get values max(E(FI)) and max(FI), respec-
tively. Numbers in the last column express a ratio between nc FI and nc E(FI). 
 

Table 1: Simulation results with 8 agents 

8 Agents Max 
E(FI) 

FI % of 
Max(FI) 

Max(FI) nc 
E(FI) 

nc FI 
Ratio )E(F nc

F nc
I

I  

1 489 489 72,7 673 97 3063 31,6 
2 432 483 73,0 662 97 3685 38,0 
3 408 336 55,3 608 97 2891 29,8 
4 470 432 66,0 655 97 2867 29,6 

average   66,7%    32,2x 
 

Table 2: Simulation results with 10 agents 

10 agents Max 
E(FI) 

FI % of 
Max(FI) 

Max(FI) nc 
E(FI) 

nc FI 
Ratio )E(F nc

F nc
I

I  

1 505 545 66,1 824 796 36302 45,6 
2 580 580 67,3 862 796 82774 104,0 
3 548 591 70,5 838 796 67498 84,8 
4 655 623 71,1 876 796 31330 39,4 

average   68,8%    68,4x 
 

Table 3: Simulation results with 12 agents 

12 agents Max 
E(FI) 

FI % of 
Max(FI) 

Max(FI) nc 
E(FI) 

nc FI 
Ratio )E(F nc

F nc
I

I  

1 634 497 52,5 946 5974 835362 139,8 
2 603 564 55,8 1010 5974 739956 123,8 
3 613 694 67,1 1034 5974 682665 114,3 
4 616 549 55,6 988 5974 1326012 222,0 

average   57,7%    150,0x 
 



On the basis of these results we can conclude that the AAV really needs to exam-
ine only an omissible number of configurations in order to achieve a maximal 
value of E(FI), in comparison with searching for a maximal value of FI. With 8 
agents, searching for a value max(FI) requires examining averagely 32 times more 
configurations than searching for max(E(FI)) needs. This coefficient might in-
crease up to 200 times when the number of agents is 12. In most of cases, the ac-
tual CC corresponding to a value max(E(FI)) achieve averagely 60% of max(FI). 
From the theoretical point of view, 60% of a value of the optimal solution might 
not be too high bound, but regard to the practical use where agents work only with 
approximated values and they do not have to negotiate one with other to get all 
information, such a solution could be considered as acceptable. Essentially in such 
situations when agents do not have enough time to finish negotiation. 

Since the aim is to find a configuration with a maximal value E(FI), we can say 
that the achieved coalition configuration has the highest expected reward among 
all possible ones, although the real value FI that this CC has might not be the high-
est in a given instance.  

However, if all values qK
i are known, there are also other methods to find a coali-

tion configuration, whose value FI even can reach closer to a value max(FI) than 
the proposed method, e.g., linear regression [2]. But the AAV has several signifi-
cant advantages over other heuristic methods, mainly from the practical point of 
view, namely:  
- More practical: the AAV does not have to work with realistic values K

iq , but 

their average value, which could be predicted much more simpler than K
iq . 

Most of other heuristic search methods, which tend to find a coalition configura-
tion with max(FI), require knowing all values K

iq |∀ i∈ I and K⊆ I. That means agents 
need to examine all 2n possible coalitions and their corresponding parameters. In 
Example 1 introduced above there are only two agents with two different ma-
chines and simple payoff functions, which have only several values. But it might 
be easy to admit that a number of combinations of plans that each agent can have 
when they join a common coalition are efficiently large. When an order or a 
place of execution of any operation changes, each agent will get a new plan with 
different outcomes. In a general instance, when the number of agents is large, 
calculating the maximal outcome of a coalition (FK|∀ K⊆ I) and a reward that each 
member of this coalition gets ( K

iq |∀ i∈ K) is much more complicated and it takes 
much more time than searching for an optimal coalition configuration with 
known values K

iq . The AAV, in contrary, does not try to achieve a coalition 
configuration with the highest value FI, but it tries to find a coalition configura-
tion with the highest expected value E(FI). A lot of practical applications require 
such an aim - to find a coalition configuration with a maximal expected reward - 



E(FI), because of the reason identifying all values K
iq |∀ i,K in a short time is im-

possible.   
- Independency of variables: all variables nk

ni
k
iq ,..,1

,..,1| =
=  are independent. Therefore, 

when something of any agent Aj changes, e.g., a payoff function, any resource is 
not available for other ones, etc. only n variables associated with this agent need 
to be recalculated. It is not valid for a case when agents work with real values 

K
iq . All coalitions that include agent Aj need to be recalculated to get new val-

ues K
iq . Since a number of such coalitions that include agent Aj are 2n-1, it is 

easy to recognize that recalculation will take enough long time – there is a half of 
all possible coalitions that agents can join.  

- Realizable complexity: simulation results confirm that the number of configura-
tions that the AAV has to examine is manageable, even if a value n is large.  

There are some main reasons that motivate to use approximated values to find an 
optimal CC, if it is impossible to identify all values K

iq in an acceptable time. 

6 Conclusions  

We have presented a new method to resolve the problem of creating and finding an 
optimal CC. Although this problem solving is known as a NP-problem, the pro-
posed method has a manageable complexity; even the number of agents is large. 
Simulation results confirm a quality of the algorithm in various situations. We 
have also discussed several important reasons that motivate to use this algorithm in 
practice. However there is point that could be considered as a limitation of this 
paper that is how to approximate precisely rewards of agents (qk

i) without negotia-
tion. In the future we are going to deal with this problem in order to get closer to 
the real-world situations. 
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