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Abstract: In the approximate fuzzy reasoning the covering over of fuzzy rule base input 
and rule premise of a rule determines the importance of that fuzzy rule and the rule output 
as well. An axiom system has been created, describing the relationship between the fuzzy 
rule base system, rule input and rule output. By using distance-based operators a novel 
reasoning method appears by the compositional rule of inference, which is based on 
similarity measures of fuzzy sets, and it will be shown that this new system satisfies the 
mentioned axiom system. 1  
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1 Introduction 

 

The concept of approximate reasoning in the known framework of the 
linguistic information was introduced by Zadeh [13]. The system state is described 
by a fuzzy rule base system, and the relationship between fuzzy rule base system, 
system output and system input is modelled by compositional rule of inference.  

The first successful practical applications of fuzzy sets were realized by means 
of the Mamdani inference [10], but the Mamdani’s approach is not fully coherent 
with the paradigm of approximate rasoning [3], [9].  

In many applications where the expressing of quantitatively overlapping of two 
sets is needed, similarity measures are used. The restriction to crisp subsets of a 
finite universe X with cardinality #X = n>0 was given in [1],[2]. It raises the 
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following questions: what are the equivalents of those measures in fuzzy set 
theory, and which fields for their application can we find.  

In the fuzzy rule based control theory and usually in the approximate 
reasoning, as well as in the covering over of fuzzy rule base input and rule premise 
of a rule determine the importance of that fuzzy rule and the rule output, too. The 
practical realization of that notion usually depends on the application. A very 
thorough overview of mathematical background of that principle can be found in 
[4], [6], [7]. 

The Mamdani type controller is based on Generalized Modus Ponens (GMP) 
inference rule, and the rule output is given with a fuzzy set, which is derived from 
rule consequence, as a cut of them. This cut is the generalized degree of firing 
level of the rule, considering actual rule base input, and usually it is the supremum 
of the minimum of the rule premise and rule input (calculating with their 
membership functions, of course). The firing level depends on the covering over 
of the rule base input and rule premise, but first of all it depends on the height of 
those covered membership functions. Engineering applications are satisfied with 
the minimum operator, but from a mathematical point of view it is interesting to 
study the behavior of other t-norms in inference mechanism. The using of distance 
based operators in fuzzy control theory (FLC) was described in [11],[12].  

In fact the uninorms offer new possibilities in fuzzy approximate reasoning, 
because the low level of covering over of rule premise and rule input has 
measurable influence on rule output as well. In some applications the meaning of 
that novel t-norms, has practical importance. 

In approximate reasoning in a fuzzy control system it can be seen that for 
distance based operators and other uninorms the height of the firing level is not a 
real measure of the covering over of the rule premise and rule input any more, we 
get a normal fuzzy set as uninorm of them. We need a new height-independent 
measure, and it opens new possibilities and also new problems in approximate 
reasoning. One of the possibilities is the degree of coincidence, DOC, used in the 
simulation system in [11], and defined by  
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where Te is the minimum distance based minimum operator. 

The modified Mamdani’s approach does not rely on the compositional rule 
inference any more, but still satisfies the basic conditions supposed for the 
approximate reasoning for a fuzzy rule base system (section 4).  



2. Basic Notations 

Let be , and RX ⊆ 0/≠X . A fuzzy subset of A is represented by its 
membership function [ ]10,X:A →μ  where the value Aμ is interpreted as the 
degree to which the value x is contained in A. The set of all fuzzy subsets on X is 
called set of fuzzy sets on X, and denoted by F(X).  

Let be A∈F(X).  

The height of fuzzy set A is ( ) ( )( )xsupA A
X

μ=height , 

the support of fuzzy set A is ( ) ( ){ }0,supp >∈= xXxxA Aμ , 

the kernel of fuzzy set A is ( ) ( ){ }1,ker =∈= xXxxA Aμ . 

Fuzzy set is normal iff ( ) 0ker /≠A .  

Let be A,B∈F(X). 

A and B are equal (A=B), if ( ) ( ) ( )Xx,xx BA ∈∀= μμ ,  

A is subset of B , (A<B or BA⊂ ), (i.e. B is superset of A), if 
( ) ( ) ( )Xx,xx BA ∈∀< μμ .  

The convex hull of set ( ) ( ) ( ){ xB,...,xB,xB n21 }  of fuzzy subsets on the same 
universe X is the smallest convex fuzzy subset ( )xC  satisfying ( ) (xCxBi )≤  for 
all .  n,...,i 21=

A function  is called triangular norm (t-norm) if and only if 
fulfils the following properties for all 

[ ] [ ]1010 2 ,,:T →
[ ]10,z,y,x ∈  

(T1)  ( ) ( )x,yTy,xT = , i.e. the t-norm is commutative  

(T2)  ( )( ) ( )( )z,yT,xTz,y,xTT = , i.e. the t-norm is associative  

(T3)  ( ) ( )z,yTz,xTyx ≤⇒≤ , i.e. the t-norm is monotone 

(T4)  , i.e., it exist neutral element, which is 1. ( ) x,xT =1

If for two t-norms  and  we have 1T 2T ( ) ( )y,xTy,xT 21 ≤  for ( ) [ ]21,0, ∈∀ yx , then 
we say, that  is weaker than , or  is stronger than . We denote this 
relation with .  

1T 2T 2T 1T

21 TT ≤

If  and , we shall write 21 TT ≤ 21 TT ≠ 21 TT < , i.e. in this case, if  and 21 TT ≤

( ) [ ]( )2
00 10,y,x ∈∃ ( ) ( )( )002001 y,xTy,xT < .  



A function  is called triangular conorm (t-conorm) if and only 
if fulfils the following properties for all 

[ ] [ ]1010 2 ,,:S →
[ ]10,z,y,x ∈  

S1. ( ) ( x,ySy,xS = ) , i.e. the t-conorm is commutative, 

S2. ( )( ) ( )( z,yS,xSz,y,xSS = ) , i.e. the t-conorm is associative,  

S3. ( ) ( )z,ySz,xSyx ≤⇒≤ , i.e. the t-conorm is monotone, 

S4.  ( ) x,xS =0 , i.e., it exist neutral element, which is 1. 

Both the neutral element 1 of a t-norm and the neutral element 0 of a t-conorm 

are boundary points of the unit interval. However, there are many important 

operations whose neutral element is an interior point of the underlying set. The 

fact that the first three axioms (T1)-(T3) for t-norms coincide with (S1)-(S3) for t-

conorms, i.e., the only axiomatic difference lies in the location of the neutral 

element, has led to the introduction of a new class of binary operations closely 

related to t-norms and t-conorms. [5]   

 A uninorm  is a binary operation U on the unit interval, i.e., a function 

[ ] [ ]1010 2 ,,:U →   which satisfies the following properties for all [ ]10,z,y,x ∈  

(U1)  ( ) ( )x,yUy,xU = , i.e. the uninorm is commutative  

(U2)  ( )( ) ( )( )z,yU,xUz,y,xUU = , i.e. the uninorm is associative  

(U3)  ( ) ( )z,yUz,xUyx ≤⇒≤ , i.e. the uninorm monotone 

(U4)  , i.e., it exist neutral element, which is ( ) xx,eU = [ ]10,e∈ . 

The distance-based operators can be expressed by means of the min and max 
operators as follows: 

the maximum distance minimum operator with respect to [ ]10,e∈  is defined as 
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the minimum distance minimum operator with respect to [ ]10,e∈  is defined as 
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the maximum distance maximum operator with respect to [ ]10,e∈  is defined as 
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the minimum distance maximum operator with respect to [ ]10,e∈  is defined as 
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The distance-based operators have the following properties  
min
emax  and  are uninorms, max

emax

the dual operator of the uninorm  is , and min
emax max

emax −1

the dual operator of the uninorm  is . max
emax min

emax −1

3. Approximate reasoning 

In the theory of approximate reasoning introduced by Zadeh in 1979, the 
knowledge of system behaviour and system control can be stated in the form of if-
then rules. In Mamadani-based sources it was suggested to represent an  

if x is A then y is B 

simply as a connection (for example as a t-norm, T(A,B) or as min) between the so 
called rule premise: x is A and rule consequence: y is B. Let x be from universe X, 
y from universe Y, and let x and y be linguistic variables. Fuzzy set A on  
finite universe is characterized by its membership function μ

ℜ⊂X
A: x→[0,1], and fuzzy 

set B on Y universe is characterized by its membership function μB: y→[0,1]. The 
most significant differences between the models of FLC-s lie in the definition of 
this connection, relation or implication. 



The strict modus ponens is replaced with the expectation: let be B’⊃B, where 
B’ is a cut of B. That is the Generalized Modus Ponens (GMP), in which the main 
point is, that the inference y is B’ is obtained when the propositions are: 

- the ith rule from the rule system of n rules: if x is Ai  then y is BBi  

- and the system input x is A’. 

GMP sees the real influences of the implication or connection choice on the 
inference mechanisms in fuzzy systems. Usually the general rule consequence for 
one rule from a rule system is obtained by 

B’(y)=supx∈X(T(A’(x),Imp(A(x),B(y))) 

The connection Imp(A,B) is generally defined, and it can be some type of t-
norm, too. 

In engineering applications the Mamdani implication is widely used. The 
Mamadani GMP with Mamdani implication inference rule says, that the 
membership function of the consequence B’ is defined by 

B’(y)=supx∈X(min(A’(x),min(A(x),B(y))) 

or generally 

B’(y)=supx∈X(T(A’(x),T(A(x),B(y))) 

where T is a t-norm. 

Using the t-norm properties, from the above expression 

B’(y)=T(supx∈X (T(A’(x),A(x))),B(y)). 

Generally speaking, the consequence (rule output) is given with a fuzzy set 
B’(y), which is derived from rule consequence B(y), as a cut of the B(y). This cut, 
supx∈X (T(A’(x),A(x))), is the generalized degree of firing level of the rule, 
considering actual rule base input A’(x), and usually depends on the covering over 
A(x) and A’(x). But first of all it depends on the sup of the membership function of 
T(A’(x),A(x)). 

The FLC rule base output is constructed as a crisp value calculated with a 
defuzzyfication model, from rule base output. Rule base output is an aggregation 
of all rule consequences BBi’(y) from the rule base. As aggregation operator, t-
conorm is usually used. 

( ) .121 ))))', B'B,S(....,S(',S(B' S(By 'B n-nout =  



4 The axioms of inference mechanism 

Let RB a fuzzy rule base system, with rule premises x is Ai and rule 

consequences: y is BBi. Let x be from universe X, y from universe Y, and let x and y 

be linguistic variables. Fuzzy set Ai on ℜ⊂X  finite universe is characterized by 

its membership function μAi: x→[0,1], and fuzzy set B on Y universe is 

characterized by its membership function μBi: y→[0,1] . Let x is A’ be the system 

input, where A’ is characterized by its membership function μA’: x→[0,1].  

Applying the generalized compositional rule of inference to given 

components the i-th rule output with respect to the given RB and given system 

input A’ is y is  given by the expression 'Bi

( ) ( ) ( ) ( )( )( )yB,xA,x'ATsupyB ii
Xx

i Imp
∈

=′ ,  

where, on a general level, Imp is the relationship between rule base premise and 

rule base concequence, satisfying the following conditions: 

(out1) If the input coincides with one of the premises, then the resulting output 

coincides with the corresponding consequence, i.e.,  

{ }( )( )iA'An,...,i ≥∈∃ 21 ii B'B  then = . 

(out2) For each normal input A’ the output is not contained in all consequences, 

i.e.,  

{ }( )( ii B'Bn,...,i <∈∃ 21 )  . 

(out3) The rule output belongs to the convex hull of BBi, ( Ii∈ ), where 

( ) ( ){ }01 ≠∩≤≤= iASupp'ASupp,niiI .  

In [9] we can find an axiom system on the same principle. 



5  Approximate rasoning with degree og coincidence 

Although the minimum plays an exceptional role in fuzzy control theory, there 
are situations requiring new models. In system control one would intuitively 
expect: to make the powerful coincidence between fuzzy sets stronger, and the 
weak coincidence even weaker. The distance-based operators group satisfy these 
properties, but the covering over A(x) and A’(x) are not really reflected by the sup 
of the membership function of the mine

max(Ai(x),A’(x)).  

Hence, and because of the non-continuous property of distance-based 
operators, it was unreasonable to use the classical degree of firing, to give 
expression to the coincidence of the rule premise (fuzzy set A), and system input 
(fuzzy set A’), therefore a Degree of Coincidence (Doc) for those fuzzy sets has 
been initiated. This is actually the proportion of area under membership function 
of the distance-based intersection of those fuzzy sets, and the area under 
membership function of their union (using max as the fuzzy union). 

( ) ( )( )
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Doc  

This definition has two advantages: 

- it consider the width of coincidence of Ai and A’, and not only the ''height'', 
the sup, and 

- the rule output is weighted with a measure of coincidence of Ai and A’ in each 
rule . 

5.1 Similarity measures as degree of coincidence 

Based on definition of similarity measures from [1] and [2], we can give a 
generalization of this reason. The next are acceptable: 

 5.1.1 The Jackard measure 

For common sets  
BA#
BA#R

∪
∩

=5 , and  

For fuzzy sets:   
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 5.1.2 The modified cardinality measure 

For common sets  
n

BA#R ∩
=6  

For fuzzy sets:  
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5.1.3  Similarity measures with distance based operators 
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5.2. How to get the rule output? 

The rule output can be the cut of the rule consequence, i.e.,  

BBi’(y)=T(supx∈X (T(A’(x),Ai (x))),BiB  (y)) , or in this case  

( ) ( )( )yB),i(DocminyB isimilarityi =′ , where 

{ }disbasedRdisbasedRRRsimilarity Doc,Doc,Doc,Doc)i(Doc 6565∈   (1) 

 

Theorem. The rule output (1) and the rule base output 
 satiesfy the axioms (out1)-(out3). ( ) ))))', B'B,S(....,S(',S(B' S(By 'B n-nout 121=



6  Conclusions 

Despite the fact, that Mamdani’s approach is not entirely based on compositional 
rule of inference, it is nevertheless very effective in fuzzy approximate reasonng. 
Because of this it is poosible to apply several t-norms, or, as in this case, 
uninorms. This leads to further tasks and problems. The problem of the 
measurement of covering over of the rule premise and rule input is partly solved 
with the degree of coincidence. But in any case there must be a system of 
conditions that is to be satisfied by the new model of inference mechanism in 
fuzzy systems.  
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