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Abstract:
This paper presents a novel fuzzy identification method for dynamic modelling of
robot manipulators. The method is based on a special parameterisation of the
antecedent part of fuzzy systems that results in fuzzy partitions for antecedents.
Christoffel symbols, the derivatives of fuzzy systems are used for modelling the
Coriolis effects and centrifugal forces. The majority of parameters, being linear, is
evaluated by the least squares method. Those few non-linear parameters are
subjected to an evolutionary global optimisation scheme and a gradient descent
based local search.
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1 Introduction
Dynamic modelling of robot manipulators (RMs), mapping the position, velocity
and acceleration of joints into forces, torque exerted to the structure is based on
the Lagrange formulation, which ensures the appropriate structure of the dynamic
model that is commonly used in control algorithms. RMs are known to be highly
non-linear multi-input multi-output systems. To preserve the known structure of
the Lagrange formulation, common to all system equations of RMs and other
dynamic systems such as missiles and aeroplanes, grey-box modelling is chosen.
Forces exerted to joints of the RM are the sum of four components modelling
consequently the torque resulting from the inertia (H), the Coriolis effects and
centrifugal forces (C), the gravity forces (g) and the viscose friction (f). Individual
knowledge of all these components is important for precise, model based robot
control algorithms. Advantage is also taken of other commonly known facts of
robotics like H and g are non-linear functions of joint positions and the driving
torque is linear in the joint accelerations. The centrifugal and Coriolis effects are
quadratic in the joint velocities and non-linear in the joint positions and f is linear
in joint velocity [1]. The DM identification method uses the measured resultant
torque and joint variables along suitably chosen paths for every joint.



Every single building block of the first, preliminary part of the identification is
approximated by a constant using a singular value decomposition (SVD) based
linear least squares (LS) method [9]. At the second step representative portions of
the training data are extracted, on bases of input space coverage in the joint
position space. The number of samples are reduced to a minimal value that is still
representative which is monitored through the condition number of the sample
matrix transformed for the SVD based linear LS method of parameter
identification. These quantitatively reduced, but qualitatively representative
portions are concatenated to give the new training data set. At the third step the
possibility of improving the model is investigated in form of FLS building blocks
for the non-linear functions of the joint positions [2]. Multi-input single-output
complete first order Takagi-Sugeno-Kang (TSK) type FLSs are considered having
membership functions (MFs) in form of Zadeh type fuzzy partitions [3].
Components of C - the Coriolis effects and centrifugal forces are evaluated as the
Christoffel symbols of FLSs forming H- the inertia matrix. The non-linear
parameters of Zadeh type fuzzy partitions are subjected to a multi-objective hybrid
evolutionary optimisation method [4]. The number of non-linear parameters is
reduced to its minimum, a single parameter is defining a Fuzzy partition (the
number of fuzzy partitions - FLS inputs is defined by the geometry of the RM,
thus cannot be reduced without significant loss in modelling precision). An
ANFIS like gradient descent method is used for all the non-linear parameter of the
dynamic model. The LS method is used for the remaining linear parameters of
every fuzzy system, it’s required Christoffel symbols and the remaining linear
parameters of the RM.

This paper presents a novel method for dynamic modelling of robot manipulators
by Zadeh-type fuzzy partitions. After this introduction the second paragraph
describes the basic concepts and notations of robotics and fuzzy logic used
throughout the paper. The third paragraph presents the new method for
representing and unconstrained tuning of the dynamic model of RMs by fuzzy
systems that for rule antecedents have Zadeh-type membership functions forming
fuzzy partitions. The fourth paragraph describes some important details of the
implementation. The fifth paragraph presents results obtained with the proposed
method and its comparison to other methods. Finally concluding remarks are made
and references are stated.

2 Robot Manipulators and Fuzzy Modelling

The application of Lagrange dynamic equations for a robot manipulator in the
joint space formulates the resultant torque iτ  acting on the ith joint from all the p

joints of the RM as a function of following vectors: joint positions ( q ), velocities

( q� ) and accelerations ( q�� ):
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where iii qqq ��� , ,  stand for the joint variables and their derivatives. The first

component of (1) is shortly referred to as qH ��⋅  describing the inertia, the second

as qC �⋅  describing the Coriolis effects and centrifugal forces, the third as g  for

the gravitational forces and the fourth as qf �⋅  for the viscous friction:
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where iijkikD D ,D ,  are in general, highly non-linear scalar functions of joint

positions. They may contain sin(.) and cos(.) functions of joint positions and/or of
their products and sums defined by the geometry of the RM. There are well known
general relations that can be used for reducing the number of unknown elements,
like ijkD  are the Christoffel symbols of ijD  [1]:
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It should be noted that direct measurement of any single component from (2) is
not possible, the only information on the output of the system is the resultant
torque (1). The identification of all non-linear functions under these terms is a
considerable problem.

The identification method to be proposed uses Zadeh-formed membership
functions (MFs) for antecedents in a Takagi-Sugeno-Kang (TSK) type FLS having
n inputs and 1 output. The antecedent, the premise part of a fuzzy rule is:
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where )(
)( iF x

il
µ  is the membership function of the ith input variable in the lth rule.

If a linguistic variable can be assigned K different linguistic values, each described

by a MF )(xkµ such that for every input x it holds that 1)(
1

=∑ =

K

k k xµ , the MFs

are said to form a fuzzy-partition. Assuming that the rule base is complete in the
sense that it covers the whole input domain, it immediately follows that the TSK
model structure simplifies to [6]:

∑ = ⋅ω= M
l ll xyxxf 1 )()()( . (5)

Zadeh-formed MFs are the Z-, the S-, and the π -functions (named after their
shape) defined respectively as:
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where 4321 bbbb ≤≤≤ are the parameters defining the MFs. If there is more than

one value x such that the degree of membership of x is equal to one, the interval
where the 1),( =µ bxk  (the interval [b2, b3] for πmf  type kµ ) is called the

plateau of the kµ  MF [7].

3 Forming the Dynamic Model of a Robot
Manipulator by Fuzzy-partitions

The nature of Zadeh-formed MFs is such that simply making equal the last two
parameters of the preceding MF to the first two parameters of the succeeding MF
easily forms fuzzy partitions. Let our input space be normalised (xmin = 0 and xmax

= 1). If we do not want to allow any plateaux, parameter b2 must be equal to b3 in
(5) and the number of parameters is 1−K , where K is the number different
linguistic values, MFs assigned to a linguistic variable, one input of the FLS.

If we take into consideration all of the constraints (5) we end up with a series of
strictly ordered parameters

0<b1<b2<…<bK-1<1 (7)

Let us define the first MF to be ),0,( 1bxmfz  and the Kth, the last one to be

)1,,( 1−Kbxmfs . Let all intermediate kth MFs be ),,,,( 11 +−π kkkk bbbbxmf  for k =

2, …, 1−K . This way the ordered series of 1−K  parameters together with
constants 1 and 0 are the minimal number of parameters to define a fuzzy-partition
of Zadeh-formed MFs.

This minimal number of non-linear parameters is a very important issue for
optimisation as over parameterised systems are hard to optimise.



Let us represent the bk parameters in a different manner [3]. Let us consider K

pieces of rational, positive or zero parameters KRa ...,,1,0 =κ∈ +
κ . If we simply

form bk as:

∑∑ =κ κ== Kk
j jk aab 11              (8)

for every k = 1, …, K all the constraints (7) are automatically fulfilled for every

κa  without any further restrictions on κa .

The proposal is to identify the Dij and Di components of the dynamic model
defined as (1), using the simplifications of (3) as FLSs of form (5) with (8), where
x will be equal to q. Forming all the Dijk components as Christoffel symbols is
possible simply as as:
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The proposal is to use an ANFIS like optimisation of all parameters, gradient
based optimisation for antecedent parameters Ka  of all FLSs and linear least

square (LS) method for consequent parts of FLSs and all remaining linear
parameters of the dynamic model. To avoid the trap of finding only a local
optimum with the gradient descent method, a fast and efficient evolutionary search
is to be performed to approach the global optimum of non-linear Ka  parameters.

5 Implementation

The proposed method is tested for a SCARA type RM. The training data set is
reduced to 179 points [8]. The input space is normalised to the unit hyper-cube.
The fuzzy-partition representation has been incorporated into a multi-objective
hybrid genetic algorithm [4]. One chromosome consists of only four Ka  integer

parameters. One parameter defines a complete fuzzy partition of three MFs. There
are only two Dijs (D11 and D12) that are non-linear functions of only two inputs q2

and q4 [2]. These four Ka  parameters are all that is required to model the non-

linearity of a SCARA RM. The remaining twelve linear parameters of the RM and
the two times twenty seven linear parameters of the two TSK FLSs having two
inputs, nine rules each is determined by the LS method.

6 Result

The result of a quick, small evolutionary search is a chromosome of (37522,
32020, 65333, 53411) for the four non-linear Ka  parameters. Linear parameters of



the dynamic model are listed in Table 1. below. The first column names the
parameter, the second contains its exact value, results of geometrical an
mechanical analysis of joints and its configuration. The third column contains an
earlier result [2]. Result of the proposed method is listed in the fourth column of
Table 1. Table 2. Contains the parameters of MFs forming Zadeh-type fuzzy
partitions. Table 3. lists all the linear parameters that form consequent parts of all
nine rules of both FLSs for D11 and D12.

Exact LSQ [2] Propsed

D11 Func11 FLS11 FLS11

D12 Func12 FLS12 FLS12

D14 0.004 1.1315 0.0098776

D22 1.1454 0.19586 1.1388

D24 0.004 -0.25933 0.005855

D33 130.2521 130.2521 130.2521

D44 0.409 -0.45519 0.40839

D112 f(Func11) FLS112 f(FLS11)

D114 0 0.0022199 0

D214 0 0.00024719 0.023923

D3 67.1985 67.1985 67.1985

f1 14.5031 14.5031 14.5031

f2 13.8 13.7869 13.5866

f3 3948.9 3948.9 3948.9

f4 13.4 13.4001 13.4008
Table 1. Linear parameters of the dynamic model.

b1 b2 b3

11zMF11(q2) 0 0.5725 -

11πMF12(q2) 0 0.5725 1

11sMF13(q2) 0.5725 1 -

11zMF21(q4) 0 0.48862 -

11πMF22(q4) 0 0.48862 1



11sMF23(q4) 0.48862 1 -

12zMF11(q2) 0 0.99693 -

12πMF12(q2) 0 0.99693 1

12sMF13(q2) 0.99693 1 -

12zMF21(q4) 0 0.81503 -

12πMF22(q4) 0 0.81503 1

12sMF23(q4) 0.81503 1 -
Table 2. Non-linear parameters 11xMFxx for FLS11 and 12xMFxx for FLS12

c0 c1 c2

11y11(q2, q4) 1.5836 -0.31855 0.0059997

11y12(q2, q4) -0.072244 0.014675 -0.033884

11y13(q2, q4) 1.5836 -0.31855 0.0059997

11y21(q2, q4) 0.43328 -0.25865 0.10659

11y22(q2, q4) 0.95086 -0.42537 -0.80804

11y23(q2, q4) 0.43328 -0.25865 0.10659

11y31(q2, q4) 1.5836 -0.31855 0.0059997

11y32(q2, q4) -0.072244 0.014675 -0.033884

11y33(q2, q4) 1.5836 -0.31855 0.0059997

12y11(q2, q4) 0.3856 0.15897 -0.0065901

12y12(q2, q4) 0.098905 -0.43382 0.022196

12y13(q2, q4) 0.3856 0.15897 -0.0065901

12y21(q2, q4) -0.79427 -0.34648 0.0096337

12y22(q2, q4) 0.12912 0.77157 -0.053574

12y23(q2, q4) -0.79427 -0.34648 0.0096337

12y31(q2, q4) 0.3856 0.15897 -0.0065901

12y32(q2, q4) 0.098905 -0.43382 0.022196

12y33(q2, q4) 0.3856 0.15897 -0.0065901
Table 3. Linear parameters of rule consequent 11yxx for FLS11 and 12yxx for FLS12



The identification error of torque acting on joints 1-4 is presented in Figure 1. The
mean square error is 0.05209, the maximal absolute error is 2.4423 Nm and there
are no more than nine such points where the error is greater than three times the
standard deviation of the error. The relative value of the maximal error is
2.8314%, 2.2275%, 0%, 0.66065% for joints 1, 2, 3 and 4 respectively.
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Figure 1. SCARA RM torque identification error in Nm for joints 1,2,3 and 4.



7 Conclusions

The proposed identification method is capable of forming and fine-tuning a soft
computing, fuzzy system based dynamic model for a robot manipulator. The
number of non-linear parameters can be kept to minimal and optimised by
evolutionary and gradient based methods, too. The value of the linear parameters
can be determined by a least squares method. After an initial evaluation [8] the
complete identification method is capable of running on-line with a control
algorithm if we use an on-line iterative least squares method for the linear
parameters [9], while from the background a hybrid evolutionary and gradient
based method [4] periodically updates the non-linear parameters.

The relative value of the maximal error is well within the tolerance level of a
model based control algorithm [1]. Parameters identified by this method can be
considered as real physical values, in contras to previous results where some
negative numbers appeared for inertia terms.
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