
Intelligent Monitoring System for the
Optimization of the Operation of Systems in
Resource Insufficient Environment

Gábor Samu, Annamária R. Várkonyi-Kóczy

Integrated Intelligent Systems Japanese-Hungarian Laboratory
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,
Magyar tudósok körútja 2., H-1117 Budapest, Hungary
� � � � � � � � � � � � 	
 � � � , � �
 � � � 	 � � � � 	
 � � �

Abstract: Agents operating in real-time domain have to encounter resource insufficiency in
some cases and applications even with deliberative and aware design. The resource
demands may vary depending on the operation phases, change in/of the environment and
especially in alert conditions and in situations caused by sudden events. A strong hardware
base can be required for operating in dynamically changing environment. Some real-time
agents applying sophisticated AI algorithms have to comply with timing constraints and
continuous operation as well, leaving them to make a compromise between the
consumption of the continuous and sufficient computation time and one or more
performance properties. Anytime algorithms provide a tradeoff between the time resource
and computational performance, namely the quality of the results. This kind of behaviour is
favorable in some domains, i.e. a less optimal decision can be better than a missing one. In
case of complex systems usually a decomposition is applied during the design process, thus
for the construction of a usable system the compilation of the operational units (modules) is
also needed. The use of anytime algorithms as operational units assumes a complex
software frame, an operation system which contains a so-called scheduler capable of
distributing the computation time among the anytime and non-anytime algorithms. This
scheduler which is called as monitor in anytime systems has to deal with the timing
considerations of many portions of the underlying operation system and even its own run-
time characteristics to determine the time allocations while tracking the performance of the
algorithms and the state of the environment. There is a gap between the implementation of
these anytime systems and the theoretical results as the compilation and the monitoring
have. A survey of a new compilation technique, a monitoring scheme, and an
implementation approach are covered by this paper.

Keywords: Anytime systems, anytime compilation, hierarchical compilation, active
monitoring, implementation

1 Introduction

The state of the art of the diagnostics systems applied in continuous technologies
is able to quickly identify run-time failures arising in the given technology and can
neutralize them between certain limits. This behavior assumes various information
processing tasks solved by a computer at real-time respectively at a well defined
response time. Serious time and/or data deficiency appearing in just the critical
operational phases is unavoidable even by a deliberative design, causing
malfunctions in the diagnostics system. Applying generalized anytime algorithms
may offer the proper get-out from the problems above. They can provide results
with less but still acceptable quality by adapting to the available time and
processing capacities at the actual state in order to sustain continuous operation
even in critical situations. Systems possessing this property need an intelligent
monitor as an add-in which tries to optimize the operation of the complete
supervised system by using sensory information about the current state. Complex
systems usually consist of smaller subsystems which are called as elementary
modules. For complex systems optimization means the distribution of the time
allocations given to the above-mentioned elementary modules (computational
elements) as to optimize the overall performance of the whole system. For this
purpose special databases are constructed for the monitor by compilation methods
which deal with special properties of the elementary modules. Some properties are
common hence compilation methods can be accelerated by algorithms based on
the consequences of these properties. In this paper the theoretical basics of a new
compilation method, the hierarchical compilation, and the active monitoring
scheme based on this proposed technique are introduced beside a rough
description of an implementation approach.

2 Anytime computation

If an algorithm can be executed for different running times and a longer time
allocation causes the algorithm giving an output of better quality in some aspect
then it is called as an anytime algorithm. Anytime algorithms are characterized by
relations in which the execution time, the quality of the input(s) and output(s) may
be involved. The relations are represented as one-, two-, and sometimes
multidimensional tables. These relations (or rather mappings) are called
performance profiles. (See [1].)

Quality is the measure of the “goodness” of any given object in some aspect
according to the possible values of the given object. Quality can be defined not
only for simple numbers but also for complex and abstract structures. E.g. a path
given by a path-planning algorithm may be qualified in several ways. One can
define a quality based on the length of the actual path by simply using the ratio of

the minimal and the actual lengths. (Minimal length may be obtained from
maximal speed.)

The quality function is a mapping from object values to quality values. Together
with it, the (time dependent) output function and a measurement method,
performance profiles can be constructed.

2.1 Profile types

Several types of profiles can be defined and constructed. The main aspect of
distinction is that which parameter is present as a part of the input in the relation:
input quality and/or output quality. If input quality is used then the profile will be
conditional. The input-output relation may be treated in statistical manner. In this
case the output of the profile is a probability distribution. The output quality is the
parameter of this distribution and thus of the profile itself too. The time is a
parameter of every profile.

Table 1 summarizes the different profile types, where the notations are: t : time,

inq : input quality, outq : output quality, q : function with quality value output
(deterministical), p : function giving a probability distribution output (statistical).

Eq : some type of expected profile.
� � � � � � � � � � 	
 � � � �
 � � �
 	 � � � �

 Function Acronym Name
)t(q PP Performance Profile

Deterministical
)t,q(q in CPP * Conditional Performance Profile

]q)[t(p out PDP Performance Distribution Profile
Statistical

]q)[t,q(p outin CPDP Conditional Perf. Distr. Profile *

)t(qE EPP Expected Performance Profile
Expected

)t,q(q inE ECPP Expected Cond. Perf. Profile

* Anytime literature uses the notation CPP mostly for Conditional Performance
Distribution Profiles (CPDPs in this paper).

Expected profiles are usually constructed from the appropriate statistical profiles
by computing expected values, along the output quality.

2.2 Profile properties

There is no point in using algorithms with decreasing quality (or expected quality)
by increasing time allocation, so profiles have to possess the increasing monotonic
property along time allocation.

Similarly it can be assumed that any increasing input quality causes non-
decreasing output qualities.

Other profile types can also be defined, see [1], [4] and [8] for further details of
dynamic profiles and time-dependent planning under uncertainty.

3 Compilation of anytime algorithms

Complex anytime systems (like other complex systems) can be decomposed to
elementary anytime (or non-anytime) modules in order to allow the design
process. On the other hand, systems work as whole entities therefore some kind of
compilation is needed to handle and to operate these systems. By compilation
many elementary algorithms can be compiled to a so called composite which acts
like an elementary module and has one or more profiles and a special structure
containing elementary allocation times for modules involved in the compilation.
Since a composite and an elementary module have the same type of description
(and indistinguishable behaviour in usual cases), a composite may not only be an
output of a compilation step but it can also be an input of it.

The compilation of elementary modules to one composite is the compilation
process. The compilation process may consist of one or more compilation steps.
The letter can make transitional composites and contains composites in its input.

Later in this paper let the expression }B,...,B,B,S,...,S,S{C n21k21 denote a single

compilation step where the elements of sets iS (k..1i =) and all the elements iB

(n..1i =) are compiled to one composite.

3.1 Compilation of two anytime modules

It is obvious that those modules which have at least one input driven by an output
of an other module have to be characterized by conditional profile(s).
Consequently, only CPPs (ECPPs) and CPDPs can be used. For a system with two
single-input single-output (SISO) anytime modules connected in serial and using
CPPs the output quality can be formulated as follows:

)T],T,q[q(q 21in12 , (1)

where inq denotes the (omittable) quality of the system input and the second

module (using index 2) is connected after the first one. iT and iq stand for the

time allocation and for the CPP of the i-th module, respectively.

The composite profile is constructed so that for every composite allocation and
composite input quality the elementary allocation pair with the highest composite
output quality is selected from the possible pairs.

Using CPPs:

)TT],T,q[q(qmax)T,q(q 11in12
T

in
1

−= , (2)

where 21 TTT += , obviously.

If modules are characterized by CPDPs then better output quality means better
expected output quality since statistical profiles operate with probability
distributions:

�

= ���
����

�
−⋅=

1qN

1i
out1i,out12i,out11in1outin]q)[TT,q(p]q)[T,q(p]q)[T,q(q , (3)

where inq and outq denote the system input and output, respectively.
1qN and

2qN nominate the extent of elementary profiles among the quality dimension.

Only compilation with CPPs will be discussed hereinafter in this paper. See [1] for
further details of working with CPDPs.

3.2 Global Compilation

The method described in the previous subsection can be extended to multimodular
systems but here we have to note that the complexity of the algorithm is growing
exponentially by the number of modules which limits its practical applicability
[1].

Assume a system Y with N elementary modules N1 M,...,M connected in any

structure and characterized by their CPPs. Let NM be the notation of the module

at the system output. The output quality of the composite can be expressed as
follows:

)T],...,T[...,q],...,T[...,q(...,q)T,...,T,q(q M1M1M11MM1inC −−= , (4)

where)T(...,q ii denotes the CPP of the i th module. Cq is a compound function

in which the elementary profiles and compound functions are the subfunctions.

The composite profile can be built by the formula below:

)TT,T,...,T,q(qmax)T,q(q
1N

1i
i1N1inC

T,...,T
in

1N1 �
−

=
− −=

−

 (5)

It is apparent that this method is not applicable for more than 3 modules therefore
better methods should be applied to eliminate the complexity problem. Fortunately
profiles have some special properties as stated above.

3.3 Modules with multiple inputs

By using SISO modules only chain structures can be created. More general, tree
structures can be made of multiple-input-single-output (MISO) modules (see
Figure 1). Compilation of these tree-structured systems is effectively solved by the
local compilation method introduced by Zilberstein [1] and discussed in the next
subsection.

 � �
�
�� � �

�

� � � � � �
� �

� �
�
�

� � � �

� � � �

� � �
�

� � � �
� � �

�

�
� � � � �

�

� �
� �

� �

�
� �

�

� �
� �

� �
� �

�
� � �

�
� �

�
� �

� �

� �
� �

	
 � �
 � � � �
 � � � �
 � � � �
 � � � � � � � �

3.4 Local Compilation

Local compilation compiles a module and modules connected on its immediate
inputs to one composite. Local compilation produces global optimum (with
pseudo-polynomial complexity) under the assumptions below:

1. Modules have conditional profiles

2. Profiles are monotonic non-decreasing functions of the input quality

3. System has a tree structure with bounded degree

4. CPDPs hold the input linearity property

Proof is given in [1]. Tree and chain structured anytime systems are discussed
briefly in [3].

The example in Figure 1 may be compiled by the compilation process shown
below:

1. }M,M,M{CC 1,22,11,1
)L(

1,1 =

2. }M,M,M{CC 2,24,13,1
)L(

2,1 =

3. }M,C,C{CC 1,32,11,1
)L(=

where operator C(L) denotes a local compilation step which can be expressed for
the compilation of modules M1,1, M1,2 and M2,1 for example in the following form:

]TTT),T,q(q),T,q(q[qmax)T,q,q(q 2,11,11,22,12,02,11,11,01,11,2
T,T

1,22,01,01,2,C
2,11,1

−−= (6)

This formula differs from the general formula of global compilation (5) only by
the arrangement of the subfunctions and not by the complexity hence a tree-
structured system with degree of more than 3 possesses the same complexity as a
chain of as many modules as the degree.

If the degree of the tree is quite high and/or the system has any structure different
than a tree then the usage of local compilation raises difficulties. Local
compilation processes the graph from the inputs therefore modules with multiple
output can not be compiled in such a way.

System graphs can also be processed from the output, moreover subsystems with
special interfaces can be compiled independently and then to the rest of the
system. The idea of processing subsystems as independent systems leads to the
new idea of hierarchical compilation and to the Output Based Incremental
Compilation process described in the following chapters.

3.5 Hierarchical Compilation

Definition 1: Selecting a subsystem S with a single output and multiple inputs
from any given DAG (Directed Acyclic Graph) represented anytime system Y and
replacing the subsystem by its global, local, or hierarchical compilated composite
is called hierarchical compilation. See Figure 2.

�

�

� �
� � � �

�
� �

�

� � 	
 � �
 �

Hierarchical compilation may yield the optimality of global compilation if certain
assumptions are made:

1. DAG represented system.

2. Input monotonity (along both the time and the input quality dimensions).

3. Modules described by CPPs.

Theorem 1: Hierarchical compilation provides global optimum beside the
assumptions above.

The proof of Theorem 1 is discussed briefly in [2].

4 Monitoring contract algorithms

There are two types of anytime algorithms: interruptible and contract algorithms.
Interruptible algorithms may be interrupted after any elapsed running time so that
they provide valid output. Contract algorithms do not give useful output values
before the expiration of the contract time. Contract time is an allocation
calculated before the activation of the algorithm. From contract algorithms,
interruptible algorithms can be constructed, see [6] for further details.

Anytime monitoring is the process of distributing allocations for elementary
algorithms so as to optimize the operation of the anytime system using
information about the current state. The distribution itself is a part of the
scheduling process which is responsible for the management of the executable
code under timing considerations (like in real-time systems).

Anytime monitoring can be passive and active. Passive monitoring assigns
allocation times before the activation of an anytime (sub-)system. Active
monitoring assigns the allocation times during the execution of the modules and
subsystems (therefore interruptible anytime operation applies active monitoring).

4.1 Output based incremental compilation

Let N1 M,...,M be a set of elementary contract modules characterized by CPPs and

connected in some structure. C denotes the system composite (created by
compiling all iM -s into one composite). Assume one system output and a total

system allocation obtained from the current state (e. g. by a utility driven
computation) nominated as T. The purpose of a system is to perform certain tasks
which is done by executing elementary operations in a well defined order called as
execution order. These operations in our anytime system are the implementation
functions of the anytime modules. The task is accomplished when the output value
appears on the system output.

When the scheduler is about to execute the subsequent (actual) elementary module
it has to compute an allocation for the module. This allocation depends only on the
remainder of the modules to schedule and the input quality of the actual module, i.
e. the remainder may be treated as an individual anytime module or rather a
composite. This remainder is called as residual composite. The residual composite
is used to obtain an allocation for it by the above-mentioned total allocation
computations and then the allocation for the actual module is given by the
compilation. This mode of scheduling requires the creation of these residual
composites.

Let }E,...,E{ N1 denote the execution order, formally a list of modules sorted by

the order of activation. The

�� N

1i
i

N

1i
i ME

==

≡ (7)

expression is true, obviously.

If the system has only one output then compilation steps implemented by
hierarchical compilation can be used to build residual composites. The first
composite will be the last module in the activation list. The second composite will
be the result of the last two modules in the list, etc. This compilation process is the
Output Based Incremental Compilation (OBIC), since the actual residual
composite and the forthcoming module are compiled together at each compilation
step. The order of modules is the reverse ordered activation list. Assuming a chain
structure the OBIC and the scheduling method of active monitoring based on the
OBIC can be formulated, as follows (the formulas would be too complicated for
any other structure):

0t

,...]i,t),T,q(q,S[T

C)T,q(T

)T,q(TT

1

ii,Ri,0i,Ri,R

i,Ri,Ri,0T,q,i

i,Ri,0T,q,ii

=

=

∈

=

TF
 (8)

where:
i : Step variable, N..1i = .

iT : Allocation for the module executed at the i-th step

)T,q(T i,Ri,0T,q,i : Time allocation table of the next module

i,RT : Residual allocation

TF : Function or algorithm giving the residual allocation

S : Set of state parameters

it : The elapsed absolute time from the system activation at the i-

th scheduling step

i,RC : The i-th residual composite

The formulas of qualities are:

i,Rii,0i

1101

111
11,01

1i1i,01ii,0

C)T,q(q

CPPP:)T,q(q

PPP:)T(q
)T,q(q

)T,q(qq

∈

�
�

�

≡
≡

≡

= −−−

, (9)

where iP is the performance profile of module iE , and 0q is the quality of the

system input.

NN,R

1i,Ri
)H(

i,R

EC

}C,E{CC

≡
= + , (10)

where {}C)H(denotes the hierarchical compilation operation.

)T,q(T i,Ri,0T,q,i,1

� � � � � � 	

 � � � �
 	 �

� � �� � � � �

fni(…, t i)
×�

T,q,SU

� � � � � 	 � � � � � � � � 	

� � � � � � �

� 	 �
 � � � � 	
�
 � � �

)T,q(q ii,0i

)T,q(q i,Ri,0i,R

� � ! �

� " # $ % & ' # $ (
) * + , - .

/ 0 1 - 2 - . 3 / 4 - .
5 67

5 8 7

5 9 7

5 8 7

5 67

5 67

5 : 7

5 ; 7

5 < 7

5 = 7
5 > 7

TM,i, TM,R,i, N
5 ? 9 7

@ A B C A D E
5 > 7

F G H I J K L M N O P Q R S G T H J T U P V T Q W G X K U P Y G W P J G Y H

Figure 3 shows the block diagram of the monitoring system. The numbers in
braces denote the sequence of the monitoring steps:

Z [\
Arrived request, real-time clock is set to zero.

Z] \
Obtaining the time needed by the monitor for the scheduling of the
residual composite. Calculating the approximate values of the
current state (using the initial values). Computing the time allocation
needed by the operating system in the interval of executing the
residual composite (e.g. interrupts).

� � �
Determining the input quality of the first module to execute and the
initial state values.

� � �
Counting the input quality of the next elementary module by using
the input quality and time allocation of the previously scheduled
module (The value is simply read from the CPP of that module).

� � �
Computing the optimal allocation (TR,i) for the residual composite.
(Utility driven computation may be used.) The input quality
computed in step (3) is applied.

� � �
Obtaining the allocation for the forthcoming elementary module by
using the input quality and the residual allocation ()T,q(T i,Ri,0T,q,i,1

 is

used.)
� � �

Executing the implementation function of the module with allocation
obtained by the previous step.

� � �
Saving the current value of the real-time clock (tEND,i-1 for the next
scheduling step).

5 Implementation by using development tools

As it can be seen in the previous chapters, the design of an anytime system has the
main parts listed below:

1 (System specification/system decomposition) [D]
2 (Creation of anytime/non-anytime algorithms) [D]
3 Determination of the profiles [D] [C]
4 Compilation of the anytime algorithms [C]
5 Monitoring/scheduling [R]

The points surrounded by round brackets are out of the scope of this paper. It can
be easily noticed that the points marked by [D] belong to the design process, mark
[C] is for activities done by the Anytime Compiler which is a part of the Anytime
Development Tool and is responsible for the creation of the run-time information
database of the system used by the Monitor during the operation (see (C1) and
(C2) in Figure 3). The Monitor operates in run-time [R], obviously.

Analyzing the operation of the anytime systems, it can be realized that on one
hand, there is a gap between the Compiler and the Monitor in that sense that the
compilation occurs before the activation of the system in contrast to the
monitoring which works after the activation, during the process of the system
operation. On the other hand, compilation and the monitoring are strongly related

together, a particular monitoring scheme requires certain compilation modes and
methods.

The operation of the elementary modules is implemented by functions written in
some programming language and the execution of these algorithms is started by
function-call-like code fragments. The gap itself is caused by the simple fact that it
is not trivial (or even impossible) to “dig out” the execution order from a source
code, especially off-line. (E.g. if these function calls are located inside if or for
structures.)

The way of the description of the anytime algorithms is not as easy in practice as it
comes from the theoretical results and from the abstract handling of the profiles at
first glance because the profiles are tables with certain sampling properties and
dimensions. It is unlikely to have profiles with fitting dimensions and appropriate
sampling intervals. Different profiles are valid for different definitions of the
output qualities and they have to be adjusted properly for different target
platforms. The complete solution of these problems is beyond this paper and under
development.

A simple system architecture of an Anytime Development Tool shown in Figure 4
is presented in the followings.

 � � � � � �
� � � � 	 �

� � � � � �

 � �

 �� � � � � �� � � � � � � � �� �

� � � � � �
� � � � 	 � � � � � � �

� � � � � � � � � �

 � �

 �� � � � � � � � � � ��

� � � � � �
� � � � � � �

� � � � � ! " � � � �

 # � � ! � �
$ �

� � � � 	 �
� ! " � � � �

 # � � ! � �
� � % � � � � � � # �

� � � �

� � � & � �
� � � � 	 �

' () * + , - . / 0 1 2 3 4 (5) + 5 6 1 7 5 8 5 8 9 : (6 , 4 , ; , 0 1 < 6 , 8 : 5 + 2 = (: , 2 : * + ,

5.1 Anytime Library

An anytime algorithm can be completely described by the following objects:

1 Source code(s) (written in certain language(s))
2 Profiles
3 Description

4 Other information

The source code can be written in several languages and compiled to intermediate
files like object files or can be included into the source of the system code.

Profiles bring the essential information about the time dependent performance of
the algorithms. Different platforms have different timing properties therefore the
profiles have to be transformed. A reference computer had been suggested by
Zilberstein which could be compared to a given platform in order to connect
profile times with the real time. However, it is apparent that various possible
execution times (allocations) of an algorithm are resulted from conditional
commands in its code therefore choosing timing properties of a specific platform
for parametrisation of the profiles is not the most efficient way. An algorithm can
have only finite number of possible allocations and if the profiles would have the
index of these allocation times as their time parameter then they would be
platform independent. This allocation time index is called as step time. The quality
in the profiles can be defined in several ways so a particular profile has to store its
quality function (a mapping from output values to quality values or distribution) to
keep all the information consistent.

The platform independent anytime algorithms can be collected in an Anytime
Library which can provide basic or complex elements for the system design.
Figure 5 shows what kind of data are needed to completely characterize an
anytime algorithm.

Algorithm Characterization

Source code(s): + language info., compiler/compilation options
profile type
profile data
quality function(s)

Profiles

source code of the profile maker fn.
Timer function source
Module description (Module ATD)
Other information

� � � � � � � � � 	
 � � � �
 � � � � � � � � � �
 �
 � � � � � �
 � � � 	

The Module description is responsible for supporting the linkage between the pure
source, the profile, and timing database (see later), and the target source. It can
also define calling conventions of the implementation function. The profile maker
function creates the profiles of the algorithm by executing it for appropriate inputs,
determining the output qualities or distributions in the proper way, and collecting
the performance data. The profile data is an array containing the samples of the
mapping implemented by the profile.

5.2 Anytime system design

The Anytime system design collects all the results of the design process. It
contains source code portions, the architectural description of the anytime system,
and many option settings.

5.3 Anytime Operation System source library

This part of the development system contains template-like source code portions
for the several types of anytime systems. It supports various monitoring schemes
and an individual operation system can be created from it for the given anytime
system design. This result is a set of compilable and/or linkable target sources and
data files which are processed by an extant language compiler (C++ compiler, for
example) to get an executable software as the final result of the anytime system
design process.

5.4 Platform data

Platform data object is a collection of platform properties, mostly the timing data.
This database is built by measurement performed by the Anytime Development
Tool with the aid of the so-called timer functions (see Figure 5). This database is
not necessarily created in compilation time and at every design iteration (step)
since working with the same platform means the platform database is needed to be
created only once.

5.5 Description of anytime systems

The Module ATD and System ATD sub-blocks in Figure 4 can be given in a
meta-language. A simple example of a proposed a language is shown in this
chapter. The AnyTime Description Language (ATDL) can be used to define
modules, tasks, and systems. From the ATDL description a C++ code is generated
which operates as an extension to the anytime operating system. This extension
can be included in the operating system on source code level and results in the
target source code. Thus, to each anytime system a separate anytime operating
system is created.

Assume a simple anytime system shown in Figure 6.

 � � � �

� � � � � � 	
 � � �
 � � � � � � � �
 � � � � � �

The ATDL description of the block � � can be in the form shown in Figure 7,
where the profile is stored in a .prf file, the header (and included by the
#include directive) of the module functions is “A1.h ”, the timing data are
located in the file “A1.tim ”. Figure 8 shows an example of a header. Note that
the algorithm’s identifier (class) will be “MA1”.

 // A1.atd
module MA1(A1_INPUTSTRUCT input – double output)
{
 profile "A1.prf";
 header "A1.h";
 timing "A1.tim";
 implementation A1(input, output);
 profile_maker A1_profile_maker;
 timing_meter A1_timing_meter;
};

� � � � � � � 	
 � �
 �
 � �

 // A1.h
#if ! defined(_A1_H_INCLUDED_)
#define _A1_H_INCLUDED_
#include "atdefs.h"

 struct A1_INPUTSTRUCT
 {
 int a, b;
 };

 void A1(A1_INPUTSTRUCT &, double &, unsigned);
 CProfile* A1_profile_maker();
 CTiming* A1_timing_meter();

#endif

� � � � � � � 	
 � �
 �

The request of the task consisting of the execution of the two modules can also be
described by the ATDL. This task description determines the structure of the
system. (Look at Figure 9.)

 // T1.atd
task T1
{
 utility "T1.utl";
 include "A1.atd";
 include "A2.atd";

 MA1 a1;
 MA2 a2;

 connections a1.output – a2.input;

 external a1.input T1_input;
 external a2.output T1_output;
};

� � � � � � � � � 	
 � � �
 � � � � � � �
 	
 � �

The two module definitions (� � and � �) have to be included to instantiate the
algorithm a1 of type MA1, and the a2 which is an MA2 typed anytime algorithm.
The single connection between the modules is defined by the connections
keyword. The output and the input of the system can be referred by the identifiers
T1_input and T1_output .

The system definition has the form shown in Figure 10. The system can run only
one task, the T1.

 system Sys
{
 include "T1.atd";
 header "Sys.inl";
 monitor active;
};

� � � � � � � � � � 	
 � � �
 � � � � � � �
 � � � � � �

Conclusions

An active monitoring method supported by the Output Based Incremental
Compilation has been introduced in this paper. The basics of a development tool
and description language have also been proposed. These tools are capable to
operate systems consisting of anytime algorithms characterized by conditional
performance profiles and arranged in a directed acyclic graph. Such systems can
very advantageously be used when the resource and/or data availability is
insufficient or changing during the operation. The OBIC is based on the
theoretical results of hierarchical compilation.

Acknowledgement

This work was sponsored by the Hungarian Fund for Scientific Research (OTKA
T 035190).

References
[1] S. Zilberstein, Operational Rationality through Compilation of Anytime

Algorithms, Dissertation for the degree of doctor of philosophy in
computer science, 1993.

[2] Samu, G., Várkonyi-Kóczy, A. R., “Intelligent Monitor for Anytime
Systems”, In Proc. of the IEEE int. Symposium on Intelligent Signal
Processing, WISP’2003, Budapest, Hungary, Sep. 4-6, 2003.

[3] J. Grass, S. Zilberstein, “Anytime Algorithm Development Tools”, UM-
CS-1995-094, 1995.

[4] E. A. Hansen, S. Zilberstein, “Monitoring the Progress of Anytime
Problem-Solving”, Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), 1996.

[5] E. A. Hansen, S. Zilberstein, “Monitoring and control of anytime
algorithms: A dynamic programming approach”, Artificial Intelligence 126
(2001) 139–157.

[6] S. Zilberstein, F. Charpillet, P. Chassaing, “Optimal Sequencing of
Contract Algorithms”, Annals of Mathematics and Artificial Intelligence,
2002.

[7] S. Zilberstein, “Optimizing Decision Quality with Contract Algorithms”,
14th International Joint Conference on Artificial Intelligence, Montreal,
Canada, aug. 1995.

[8] Garvey, V. Lesser, “Design-to-time Scheduling with Uncertainty”, SIGART
Bulletin, jan. 9, 1995.

[9] Garvey, V. Lesser, “A Survey of Research in Deliberative Real-Time
Artificial Intelligence”, UMass Computer Science Technical Report 93–84,
nov. 19, 1993.

[10] S. Zilberstein, S. Russell, “Approximate Reasoning Using Anytime
Algorithms”, In S. Natarajan, editor, Imprecise and Approximate
Computation. Kluwer Academic Publishers, Dordrecht, 1995. 11.

[11] S. Zilberstein, S. Russell, “Optimal Composition of real-time systems”,
Artificial Intelligence, 82(1-2):181--213, 1996.

[12] M. Boddy, T. L. Dean, “Solving time-dependent planning problems”, In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, Michigan (1989) 979-984.

[13] Labrosse, J. J. (1992-1995), “uC/OS, The Real-Time Kernel”, source
codes. R&D Books, 1992., ISBN 0-13-031352-1.

[14] Waite, M. W.,Goos, G. (1984), “Compiler Construction”, ISBN 0-387-
90821-8.

