Intelligent Monitoring System for the
Optimization of the Operation of Systems in
Resource Insufficient Environment

Géabor Samu, Annamaria R. Varkonyi-Koczy

Integrated Intelligent Systems Japanese-Hungarian Lapgrat
Department of Measurement and Information Systems,
Budapest University of Technology and Economics,

Magyar tudésok korutja 2., H-1117 Budapest, Hungary
sg222@hszk.bme.hu, koczy@mit.bme.hu

Abstract: Agents operating in real-time domain have to encounter resourceinsufficiency in
some cases and applications even with deliberative and aware design. The resource
demands may vary depending on the operation phases, change in/of the environment and
especially in alert conditions and in situations caused by sudden events. A strong hardware
base can be required for operating in dynamically changing environment. Some real-time
agents applying sophisticated Al algorithms have to comply with timing constraints and
continuous operation as well, leaving them to make a compromise between the
consumption of the continuous and sufficient computation time and one or more
performance properties. Anytime algorithms provide a tradeoff between the time resource
and computational performance, namely the quality of theresults. Thiskind of behaviour is
favorable in somedomains, i.e. aless optimal decision can be better than a missing one. In
case of complex systems usually a decomposition is applied during the design process, thus
for the construction of a usable system the compil ation of the operational units (modules) is
also needed. The use of anytime algorithms as operational units assumes a complex
software frame, an operation system which contains a so-called scheduler capable of
distributing the computation time among the anytime and non-anytime algorithms. This
scheduler which is called as monitor in anytime systems has to deal with the timing
considerations of many portions of the underlying operation system and even its own run-
time characteristics to determine the time all ocati ons whil e tracking the performance of the
algorithms and the state of the environment. There is a gap between the implementation of
these anytime systems and the theoretical results as the compilation and the monitoring
have. A survey of a new compilation technique, a monitoring scheme, and an
implementation approach are covered by this paper.

Keywords: Anytime systems, anytime compilation, hierarchical compilation, active
monitoring, implementation

1 Introduction

The state of the art of the diagnostics systems applieontinuous technologies
is able to quickly identify run-time failures arising hetgiven technology and can
neutralize them between certain limits. This behaagsumes various information
processing tasks solved by a computer at real-time résggat a well defined
response time. Serious time and/or data deficiency apgearijust the critical
operational phases is unavoidable even by a deliberatégign, causing
malfunctions in the diagnostics system. Applying genezdlemytime algorithms
may offer the proper get-out from the problems aboveyTdan provide results
with less but still acceptable quality by adapting to #wilable time and
processing capacities at the actual state in order taisuwntinuous operation
even in critical situations. Systems possessing thopgsty need an intelligent
monitor as an add-in which tries to optimize the opemnabf the complete
supervised system by using sensory information aboututrent state. Complex
systems usually consist of smaller subsystems whiehcalled as elementary
modules. For complex systems optimization means thehdison of the time
allocations given to the above-mentioned elementaogules (computational
elements) as to optimize the overall performancenefwhole system. For this
purpose special databases are constructed for the miopitompilation methods
which deal with special properties of the elementargiufes. Some properties are
common hence compilation methods can be acceleratethbsithms based on
the consequences of these properties. In this papendbeetical basics of a new
compilation method, the hierarchical compilation, ahé &ctive monitoring
scheme based on this proposed technique are introduced lzesidagh
description of an implementation approach.

2 Anytime computation

If an algorithm can be executed for different running sma@d a longer time
allocation causes the algorithm giving an output of beftexity in some aspect
then it is called as aamytime algorithm. Anytime algorithms are characterized by
relations in which the execution time, the qualityraf input(s) and output(s) may
be involved. The relations are represented as ones;, tand sometimes
multidimensional tables. These relations (or ratheappings) are called
performance profiles. (See [1].)

Quality is the measure of the “goodness” of any given objectdme aspect
according to the possible values of the given objectliQuzan be defined not
only for simple numbers but also for complex and abss@ottures. E.g. a path
given by a path-planning algorithm may be qualified in sEveays. One can
define a quality based on the length of the actual pa#iinipgly using the ratio of

the minimal and the actual lengths. (Minimal length niey obtained from
maximal speed.)

The quality function is a mapping from object values to quality values. Togethe
with it, the (time dependent) output function and a measeménmethod,
performance profiles can be constructed.

2.1 Profile types

Several types of profiles can be defined and construdied. main aspect of
distinction is that which parameter is present as agfahe input in the relation:
input quality and/or output quality. If input quality is used tkiem profile will be
conditional. The input-output relation may be treated in statistizahner. In this
case the output of the profile iseobability distribution. The output quality is the
parameter of this distribution and thus of the profielittoo. The time is a
parameter of every profile.

Table 1 summarizes the different profile types, wheeentbtations aret : time,
g, . input quality, q,, : output quality,q: function with quality value output
(deterministical),p : function giving a probability distribution output (staidst).
ge : some type of expected profile.

Table 1: Performance profiles

Function Acronym Name
L q(t) PP Performance Profile
Deterministical -
q(a, 1) CPP Conditional Performance Profile
- P(t)[Aoy PDP | Performance Distribution Profile
Statistical -
pP@;,, t)[Ao] CPDP | Conditional Perf. Distr. Profile
ge (1) EPP | Expected Performance Profile
Expected
ge (@, 1) ECPP | Expected Cond. Perf. Profile

" Anytime literature uses the notation CPP mostly for Conditional Performance
Distribution Profiles (CPDPs in this paper).

Expected profiles are usually constructed from the appropsiatistical profiles
by computing expected values, along the output quality.

2.2 Profile properties

There is no point in using algorithms with decreasing tug@i expected quality)
by increasing time allocation, so profiles have tespss théncreasing monotonic
property along time allocation.

Similarly it can be assumed that aincreasing input quality causesnon-
decreasing output qualities.

Other profile types can also be defined, see [1], [4] [8hdor further details of
dynamic profiles and time-dependent planning under uncertainty

3 Compilation of anytime algorithms

Complex anytime systems (like other complex systems)beadecomposed to
elementary anytime (or non-anytime) modules in orderalfow the design

process. On the other hand, systems work as wholésritierefore some kind of
compilation is needed to handle and to operate thesensysBy compilation

many elementary algorithms can be compiled to a $ediadmposite which acts

like an elementary module and has one or more profildsaaspecial structure
containing elementary allocation times for moduleived in the compilation.

Since a composite and an elementary module have the tyam of description

(and indistinguishable behaviour in usual cases), a cotepusiy not only be an
output of a compilation step but it can also be an inpiit of

The compilation of elementary modules to one compasithe compilation
process. The compilation process may consist of one or ncongpilation steps.
The letter can make transitional composites and amtamposites in its input.
Later in this paper let the expressiofS ,S,.....S,,B,,B,,...,.B, dénote a single
compilation step where the elements of etgi =1. k) and all the elementB,

(i =1.n) are compiled to one composite.

3.1 Compilation of two anytime modules

It is obvious that those modules which have at leastioput driven by an output
of an other module have to be characterized by conditigrofile(s).
Consequently, only CPPs (ECPPs) and CPDPs can be asetdsystem with two
single-input single-output (SISO) anytime modules connectesiial and using
CPPs the output quality can be formulated as follows:

d, (@0, 21, T,) 1)

where g,, denotes the (omittable) quality of the system inpwt #ire second
module (using index 2) is connectaftier the first one.T, and g, stand for the

time allocation and for the CPP of the i-th modulspestively.

The composite profile is constructed so that for ewamposite allocation and
composite input quality the elementary allocation paihwhe highest composite
output quality is selected from the possible pairs.

Using CPPs:
a(Q,,T) = mT?XQ2 @.[9,,, T, T-T,), (2)

whereT =T, +T,, obviously.

If modules are characterized by CPDPs then better ogtplity means better
expected output quality since statistical profiles operatéh vgrobability
distributions:

Nm

q(qin ’T)[qout] = Z[pl (qin 'Tl)[qlouti] mz (qlouLi 'T - Tl)[qout]J ’ (3)
i=1

where g;, andq,, denote the system input and output, respectively. and

N, nominate the extent of elementary profiles amongjttadity dimension.

Only compilation with CPPs will be discussed hereinaftehis paper. See [1] for
further details of working with CPDPs.

3.2 Global Compilation

The method described in the previous subsection can d&eded to multimodular
systems but here we have to note that the compleixiheaalgorithm is growing
exponentially by the number of modules which limitsgtactical applicability

[1].
Assume a systenY with N elementary module$/,,...M connected irany
structure and characterized by their CPPs. IM{, be the notation of the module

at the system output. The output quality of the compositebeaexpressed as
follows:

Ac (Qin 'Tl""’TM) =0 ("'!Q1[‘"’Tl]i'"!QM—l[""TM—l]""’TM)) (4)
whereq(...,T,) denotes the CPP of tidh module.q. is a compound function
in which the elementary profiles and compound functioegfee subfunctions.

The composite profile can be built by the formula below

N-1

a(@,.T) = Tm%iqc((]in T Ty T _Z

i=1

T) (5)

It is apparent that this method is not applicable forentban 3 modules therefore
better methods should be applied to eliminate the complesablem. Fortunately
profiles have some special properties as stated above.

3.3 Modules with multiple inputs

By using SISO modules only chain structures can be cteltere general, tree
structures can be made of multiple-input-single-output (MI&@gdules (see
Figure 1). Compilation of these tree-structured systerafidstively solved by the
local compilation method introduced by Zilberstein [1] and discussed in &x¢ n
subsection.

Figure 1: Tree structured system

3.4 Local Compilation

Local compilation compiles a module and modules connecteiisammediate
inputs to one composite. Local compilation produces glapmum (with
pseudo-polynomial complexity) under the assumptions below:

1. Modules have conditional profiles

2. Profiles are monotonic non-decreasing functions@iiput quality
3. System has a tree structure with bounded degree

4. CPDPs hold the input linearity property

Proof is given in [1]. Tree and chain structured anytsystems are discussed
briefly in [3].

The example in Figure 1 may be compiled by tepilation process shown
below:

1' Cl,l = C(L){M 1,1'M 1,2'M 2,1}
2. C,=CYM; ;M ,,M,,}
3. C=CM{C,,Ciy, My

where operator € denotes a locatompilation step which can be expressed for
the compilation of modules M, M; , and M, ; for example in the following form:

Uc21(@o1:Go2: T21) = TT%)Z(Q 220021 (@01, T11) A1z @02, T12)s Ton = Tus — Tl (6)

This formula differs from the general formula of globbampilation (5) only by
the arrangement of the subfunctions and not by the etityplhence a tree-
structured system with degree of more than 3 possesssartteecomplexity as a
chain of as many modules as the degree.

If the degree of the tree is quite high and/or the sysi@snany structure different
than a tree then the usage of local compilation rattiffculties. Local
compilation processes the grafsbm the inputs therefore modules with multiple
output can not be compiled in such a way.

System graphs can also be procedsamh the output, moreover subsystems with
special interfaces can be compiled independently and tihehe rest of the
system. The idea of processing subsystems as indeperydts leads to the
new idea of hierarchical compilation and to the OutpuseBalncremental
Compilation process described in the following chapters.

3.5 Hierarchical Compilation

Definition 1: Selecting a subsyste®with a single output and multiple inputs
from any givenDAG (Directed Acyclic Graph) represented anytime systesnd
replacing the subsystem by its global, local, or h@vigal compilated composite
is calledhierarchical compilation. See Figure 2.

—> - s 9
‘D igso| S > —>
— >
R
Y

Figure 2: Hierarchical compilation

Hierarchical compilation may yield the optimality obbghal compilation if certain
assumptions are made:

1. DAG represented system.
2. Input monotonity (along both the time and the input quality dimensions).
3. Modules described by CPPs.

Theorem 1 Hierarchical compilation provides global optimum besitie
assumptions above.

The proof ofTheorem 1is discussed briefly in [2].

4 Monitoring contract algorithms

There are two types of anytime algorithrimgerruptible andcontract algorithms.
Interruptible algorithms may be interrupted after anpsta running time so that
they provide valid output. Contract algorithms do not givefulsoutput values
before the expiration of theontract time. Contract time is an allocation
calculated before the activation of the algorithm. nfrroontract algorithms,
interruptible algorithms can be constructed, see [6fuidher details.

Anytime monitoring is the process of distributing allocations for eleragnt
algorithms so as to optimize the operation of the iamytsystem using
information about the current state. The distributitself is a part of the
scheduling process which is responsible for the management of the exbleuta
code under timing considerations (like in real-time sys)e

Anytime monitoring can bepassive and active. Passive monitoring assigns
allocation timesbefore the activation of an anytime (sub-)system. Active
monitoring assigns the allocation timéwwing the execution of the modules and
subsystems (therefore interruptible anytime operatigiies active monitoring).

4.1 Output based incremental compilation

Let M,,....M be a set of elementary contract modules charaetéliy CPPs and

connected in some structure. C denotes the system cbengoseated by
compiling all M,-s into one composite). Assume one system output aothhk t

system allocation obtained from the current stateg(eby a utility driven
computation) nominated as T. The purpose of a systeorpisrform certain tasks
which is done by executing elementary operations inledetned order called as
execution order. These operations in our anytime system are the imgiation
functions of the anytime modules. The task is accomgdisthen the output value
appears on the system output.

When the scheduler is about to execute the subsequent)ateazentary module

it has to compute an allocation for the module. THacation depends only on the
remainder of the modules to schedule and the input qualityeaictual module, i.

e. the remainder may be treated as an individual anytimdule or rather a
composite. This remainder is calledresdual composite. The residual composite
is used to obtain an allocation for it by the abowntioned total allocation

computations and then the allocation for the actual neodslgiven by the

compilation. This mode of scheduling requires the creatibithese residual

composites.

Let {E,,...E\} denote the execution order, formally a list of moduteses by
the order of activation. The

UE =Um. Y

expression is true, obviously.

If the system has only one output then compilation siegdemented by
hierarchical compilation can be used to build residual pumites. The first
composite will be the last module in the activatiat. [The second composite will
be the result of the last two modules in the list, Eis compilation process is the
Output Based Incremental Compilation (OBIC), since the actual residual
composite and the forthcoming module are compiled togethesich compilation
step. The order of modules is the reverse ordered aotiagt. Assuming a chain
structure the OBIC and the scheduling method of activatorarg based on the
OBIC can be formulated, as follows (the formulas wdagdtoo complicated for
any other structure):

T =T g7, Tri)
Tigr (@i Tri) UCry

Tri =K [S’qR,i (%,i 'TR,i)'ti’i""]
t,=0

(8)

where:

i Step variablej =1..N .
T: Allocation for the module executed at the i-th step

Tiqr (@, Tri) : Time allocation table of the next module
Residual allocation
Function or algorithm giving the residual allocation

Set of state parameters
The elapsed absolute time from the system activatidhe i-

th scheduling step

e g

Cri: The i-th residual composite
The formulas of qualities are:
Goi = Ui @, Tica)

QT) :R=PP
0 J)s{ , 9
A CRC AR R ©)

0 (%,i» T;) U Cg;
where P is the performance profile of modutg , and g, is the quality of the

system input.

Cri = C(H){ Ei,Crunt

~ : (10)
CR,N =Ey

where C"){} denotes the hierarchical compilation operation.

it 1)

Figure 3: Block diagram of active monitoring

Figure 3 shows the block diagram of the monitoring systEhe numbers in
braces denote the sequence of the monitoring steps:

(0) Arrived request, real-time clock is set to zero.

(1) Obtaining the time needed by the monitor for the scliregluf the
residual composite. Calculating the approximate values ef th
current state (using the initial values). Computing the tallocation
needed by the operating system in the interval of exegutie
residual composite (e.g. interrupts).

(2) Determining the input quality of the first module to exeautd the
initial state values.

(3) Counting the input quality of the next elementary moduleding
the input quality and time allocation of the previouslhextuled
module (The value is simply read from the CPP of thatute).

(4) Computing the optimal allocation £]) for the residual composite.
(Utility driven computation may be used.) The input quality
computed in stefB) is applied.

(5) Obtaining the allocation for the forthcoming elemeyptaodule by
using the input quality and the residual aIIocatiqrﬂ’q(’T (@ Try) 1S

used.)

(6) Executing the implementation function of the module wikbcation
obtained by the previous step.

(7) Saving the current value of the real-time clogkt; for the next
scheduling step).

5 Implementation by using development tools

As it can be seen in the previous chapters, the dekgmanytime system has the
main parts listed below:

1 (System specification/system decompositih)
2 (Creation of anytime/non-anytime algorithnf8)
3 Determination of the profile8! [©]

4 Compilation of the anytime algorithnif3

5 Monitoring/scheduling®

The points surrounded by round brackets are out of the s€dpis paper. It can
be easily noticed that the points marked®bpelong to the design process, mark
(¥ is for activities done by the Anytime Compiler whiisha part of the Anytime
Development Tool and is responsible for the creatfdherun-time information
database of the system used by the Monitor during thextiper(seg(C1) and
(C2) in Figure 3). The Monitor operates in run-tifife obviously.

Analyzing the operation of the anytime systems, it ba realized that on one
hand, there is a gap between the Compiler and the Madnitbat sense that the
compilation occurs before the activation of the swstan contrast to the
monitoring which works after the activation, during t®cess of the system
operation. On the other hand, compilation and the raong are strongly related

together, a particular monitoring scheme requires cectinpilation modes and
methods.

The operation of the elementary modules is implemengedriztions written in
some programming language and the execution of these aigserithstarted by
function-call-like code fragments. The gap itself is cdusethe simple fact that it
is not trivial (or even impossible) to “dig out” the exéon order from a source
code, especially off-line. (E.g. if these function salke located insidié or for
structures.)

The way of the description of the anytime algorithmsat as easy in practice as it
comes from the theoretical results and from the abistrandling of the profiles at
first glance because the profiles are tables withaoerdampling properties and
dimensions. It is unlikely to have profiles with fittjrdimensions and appropriate
sampling intervals. Different profiles are valid for fditent definitions of the
output qualities and they have to be adjusted properly foerdift target
platforms. The complete solution of these problemsysid this paper and under
development.

A simple system architecture of an Anytime Developnierd shown in Figure 4
is presented in the followings.

System System Module Module Module
| source ATD ; || source data ATD
Argftzme,yxtemdmgn __ nytime [rary
Anytime | 00 0, N\ T
OS Anytl.rne : Module
source Development |[¢——— platf.o mo
library Tool i datalibrary

Y
Target

source

Figure 4: Block diagram of an anytime development architecture

5.1 Anytime Library

An anytime algorithm can be completely described byfdhewing objects:

1 Source code(s) (written in certain language(s))
2 Profiles
3 Description

4 Other information

The source code can be written in several languagesoamulled to intermediate
files like object files or can be included into the ssuof the system code.

Profiles bring the essential information about timeetidependent performance of
the algorithms. Different platforms have differentitign properties therefore the
profiles have to be transformed. A reference compuger been suggested by
Zilberstein which could be compared to a given platformoider to connect
profile times with the real time. However, it is apgar that various possible
execution times (allocations) of an algorithm are tesulfrom conditional
commands in its code therefore choosing timing propesfiesspecific platform
for parametrisation of the profiles is not the mdBtient way. An algorithm can
have only finite number of possible allocations anithé profiles would have the
index of these allocation times as their time paramgten they would be
platform independent. This allocation time index is chdlsstep time. The quality
in the profiles can be defined in several ways so tiqpéar profile has to store its
quality function (a mapping from output values to quality values or distribjitio
keep all the information consistent.

The platform independent anytime algorithms can be atelein an Anytime
Library which can provide basic or complex elements tfa system design.
Figure 5 shows what kind of data are needed to completelyacterize an
anytime algorithm.

Algorithm Characterization
Source code(s): + language info., compiler/compilationoopti
profile type
profile data
quality function(s)
source code of the profile maker fn.
Timer function source
Module description (Module ATD)
Other information

Profiles

Figure 5: Anytime algorithm characterization

The Module description is responsible for supporting theatye between the pure
source, the profile, and timing database (see lated) ttaen target source. It can
also define calling conventions of the implementafiorction. Theprofile maker
function creates the profiles of the algorithm by executingriefopropriate inputs,
determining the output qualities or distributions in the progsy, and collecting
the performance data. The profile data is an arrayagung the samples of the
mapping implemented by the profile.

5.2 Anytime system design

The Anytime system design collects all the resultghef design process. It
contains source code portions, the architectural desuripf the anytime system,
and many option settings.

5.3 Anytime Operation System source library

This part of the development system contains tempilegesburce code portions
for the several types of anytime systems. It suppent®wys monitoring schemes
and an individual operation system can be created frdar the given anytime
system design. This result is a set of compilable arigveibletarget sources and
data files which are processed by an extant language esr(@it+ compiler, for
example) to get an executable software as the finaltrekthhe anytime system
design process.

5.4 Platform data

Platform data object is a collection of platform prdjgs; mostly the timing data.
This database is built by measurement performed by thgime Development
Tool with the aid of the so-calladmer functions (see Figure 5). This database is
not necessarily created in compilation time and atyeslesign iteration (step)
since working with the same platform means the platidatabase is needed to be
created only once.

5.5 Description of anytime systems

The Module ATD and System ATD sub-blocks in Figure 4 cargiben in a
meta-language. A simple example of a proposed a languagevis shathis
chapter. The AnyTime Description Language (ATDL) canulBed to define
modules, tasks, and systems. From the ATDL descript©ntacode is generated
which operates as an extension to the anytime opgragstem. This extension
can be included in the operating system on source codedad results in the
target source code. Thus, to each anytime system aateparytime operating
system is created.

Assume a simple anytime system shown in Figure 6.

A2 ——>»

— Al

A

Figure 6: A simple anytime chain

The ATDL description of the blockl can be in the form shown in Figure 7,
where the profile is stored in grf file, the header (and included by the
#include directive) of the module functions i\1.h ", the timing data are
located in the file Al.tim ”. Figure 8 shows an example of a header. Note that
the algorithm’s identifier (class) will beMAT.

/I Al.atd
modul e MAL(A1_INPUTSTRUCT input — double output)
t profile Al prf"

header "A1.h";

tim ng"Al.tim";

i mpl enent at i on Al(input, output);

profil e_maker Al_profile_maker;

tim ng_meter Al_timing_meter;

Figure 7: ATDL Example for an algorithm ATDL

/I Al.h

#if 1 defined(_Al_H_INCLUDED)
#define A1 H_INCLUDED_

#i ncl ude "atdefs.h"

struct Al INPUTSTRUCT

int a b;

k

voi d AL(A1_INPUTSTRUCT &, double &, unsigned);
CProfile* A1_profile_maker();
CTiming* Al_timing_meter();

#endi f

Figure 8: ATDL Example for an algorithm header

The request of the task consisting of the executioneofitle modules can also be
described by the ATDL. This task description determirnes dtructure of the
system. (Look at Figure 9.)

/I Tl.atd
task T1

utility"T1l.utl"
i ncl ude "Al.atd";
i ncl ude "A2.atd";

MA1 al;
MA2 a2;

connecti ons al.output — a2.input;

external al.input T1_input;
external a2.output T1_output;

Figure 9: ATDL example for a Task

The two module definitionsAl and A2) have to be included to instantiate the
algorithmal of typeMA1, and thea2 which is anMA2typed anytime algorithm.
The single connection between the modules is definethdgonnections
keyword. The output and the input of the system can beedfey the identifiers
T1 input andT1_output

The system definition has the form shown in FigureTt® system can run only
one task, tha1.

systemr Sys
i ncl ude "T1.atd";

header "Sys.inl";
nonitor active;

Figure 10: ATDL example for a system

Conclusions

An active monitoring method supported by the Output Basedermental
Compilation has been introduced in this paper. The basiasdevelopment tool
and description language have also been proposed. Theseateotapable to
operate systems consisting of anytime algorithms cheniaed by conditional
performance profiles and arranged in a directed acyclighgr@uch systems can
very advantageously be used when the resource and/or databgity is
insufficient or changing during the operation. The OBICb&sed on the
theoretical results of hierarchical compilation.

Acknowledgement

This work was sponsored by the Hungarian Fund for SdieRédsearch (OTKA
T 035190).

References

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

[12]

[13]

[14]

S. Zilberstein, Operational Rationality through Golation of Anytime
Algorithms, Dissertation for the degree of doctor of Igdophy in
computer science, 1993.

Samu, G., Varkonyi-Koczy, A. R., “Intelligent Mooit for Anytime
Systems”, In Proc. of the IEEE int. Symposium on lligent Signal
Processing, WISP’'2003, Budapest, Hungary, Sep. 4-6, 2003.

J. Grass, S. Zilberstein, “Anytime Algorithm Déwement Tools”, UM-
CS-1995-094, 1995.

E. A. Hansen, S. Zilberstein, “Monitoring the Bress of Anytime
Problem-Solving”,Proceedings of the Thirteenth National Conference on
Artificial Intelligence (AAAI-96), 1996.

E. A. Hansen, S. Zilberstein, “Monitoring and awht of anytime
algorithms: A dynamic programming approachttificial Intelligence 126
(2001) 139-157.

S. Zilberstein, F. Charpillet, P. Chassaing, “OmtinSequencing of
Contract Algorithms” Annals of Mathematics and Artificial Intelligence,
2002.

S. Zilberstein, “Optimizing Decision Quality withd@tract Algorithms”,
14th International Joint Conference on Artificial Intelligence, Montreal,
Canada, aug. 1995.

Garvey, V. Lesser, “Design-to-time Scheduling withdartainty”,S GART
Bulletin, jan. 9, 1995.

Garvey, V. Lesser, “A Survey of Research in Deldtive Real-Time
Atrtificial Intelligence”, UMass Computer Science Technical Report 93-84,
nov. 19, 1993.

S. Zilberstein, S. Russell, “Approximate Reasoningng/sAnytime
Algorithms”, In S. Natarajan, editorJmprecise and Approximate
Computation. Kluwer Academic Publishers, Dordrecht, 1995. 11.

S. Zilberstein, S. Russell, “Optimal Composition refl-time systems”,
Artificial Intelligence, 82(1-2):181--213, 1996.

M. Boddy, T. L. Dean, “Solving time-dependent planninghbems”, In
Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, Detroit, Michigan (1989) 979-984.

Labrosse, J. J. (1992-1995), “uC/OS, The Real-Time Kérmselurce
codes. R&D Books, 1992., ISBN 0-13-031352-1.

Waite, M. W.,Goos, G. (1984), “Compiler ConstructiohSBN 0-387-
90821-8.

