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Abstract: General non-additive measures with some related di�erent monotone mea-

sures (some types of variations), which have some important additional properties,

can be easier and more eÆciently investigated. There is considered the general class

of null-additive set functions. We discuss the representation through two Sugeno in-

tegrals of a comonotone-�_-additive and monotone functional L, de�ned on the class

of functions from X to [�1; 1].
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1 Introduction

We shall consider three actual results on non-additive measures : variations, the

class of null-additive set functions and a recent representation of an important

functional in CPT through two Sugeno integrals.

First, we will correspond to every set function ([1, 5, 17]) special positive

set functions with some additional properties. Motivated by the notion of the

variation of the classical measure we introduce axiomatically the notion of the

variation of the general set function and prove that it always exists, but in

general case it is not unique.

Second, we consider a wide class of non-additive measures: null-additive set

functions, and we present some of important results obtained for this class of

set functions, see [17].

Choquet and Sugeno integrals, with respect to a fuzzy measure, are very

powerful tools (as aggregation operators) in the �eld of the decision making.

Two crucial properties of the Choquet integral are monotonicity and comono-

tonic additivity, see [2, 3, 6, 17]. The Cumulative Prospect Theory (CPT),

introduced by Tversky and Kahneman [21], combines the Cumulative utility

and the generalization of Expected utility, so called sign dependent expected

utility. In this paper we consider the two Sugeno integrals representation of

the functional L de�ned on the class of functions f : X ! [�1; 1] on a �nite

set X .



2 Variations

We consider a general set functions m; m : D ! [�1;+1]; with m(?) = 0

(extended real-valued set function), see [17], where D denote a family of subsets

of a set X with ? 2 D: m is (�nite) real-valued set function if �1 < m(A) <

+1 for all A 2 D; and m is monotone if A � B implies m(A) � m(B) for

every A;B 2 D: m is non-negative if it is �nite and m(A) � 0 for all A 2 D;

and m : D ! [0;+1] is positive.

We introduce for an arbitrary set function axiomatically a generalization of

the variation.

De�nition 1 Let m be a set function de�ned on D with values in R (or

[0;+1]); with m(?) = 0: Then variation of m is a set function � : D ! [0;+1]

with the following properties:

(i) For every A � X we have

0 � �(A) � +1;

(ii) �(?) = 0;

(iii) j m(A) j� �(A) (A 2 D);

(iv) � is monotone, i.e., if B � A; then �(B) � �(A);

(v) �(A) = 0 if and only if m(B) = 0 for every subset B of A from D:

We easily obtain: For every A � X we have

�(A) � supfj m(B) j: B � A; B 2 Dg:

Namely, if B is a arbitrary subset of A which belongs to D we have by the

properties (iv) and (iii)

�(A) � �(B) �j m(B) j :

Theorem 1 For every set function m de�ned on D and with values in R (or

[0;+1]); with m(?) = 0; always exists its variation, which in general case is

not uniquely determined.

We introduce two special set functions related to a given set function m:

De�nition 2 For an arbitrary but �xed subset A of X and a set function m

we de�ne the disjoint variation m by

m(A) = sup
I

X
i2I

j m(Di) j; (1)

where the supremum is taken over all �nite families fDigi2I of pairwise disjoint

sets of D such that Di � A (i 2 I):



De�nition 3 For an arbitrary but �xed A 2 D and a set function m we de�ne

the chain variation j m j by

j m j (A) = supf

nX
i=1

j m(Ai)�m(Ai�1) j:

? = A0 � A1 � � � � � An = A;Ai 2 D; i = 1; : : : ; ng: (2)

We remark that the supremum in the previous de�nition is taken over all �nite

chains between ? and A:

Open problem: Find all variations of a given arbitrary set function m:

We shall give a partial answer on this problem, when we require some

additional properties of the variation.

Theorem 2 Let m be a set function de�ned on � with values in R (or [0;+1]);

with m(?) = 0: Then m given by (1) is the smallest variation of m (de�ned on

P(X)) which is superadditive.

3 Null-additive set functions

Let R be a ring of subsets of a given set X:

De�nition 4 A set function m;m : R ! [0;1] with m(?) = 0 is called null-

additive, if we have

m(A [ B) = m(A)

whenever A;B 2 R; A \ B = ? and m(B) = 0:

There were proved many results in the analogy of the classical measure theory.

For the properties of null-additive set functions see [17, 23].

Example 1 Let S be a triangular conorm (t-conorm), i.e., a binary operation

on [0; 1] such that it is associative, commutative and monotone with a neutral

element 0; see [13]. Some examples of t-conorms are SM = max; SL(x; y) =

min(1; x + y); SSW� (x; y) = min(x + y + �xy; 1) for � > �1: A set function

m : R ! [0; 1] is called S-measure if m(?) = 0 and

m(A [ B) = m(A)Sm(B)

whenever A;B 2 R and A\B = ?: m is a monotone null-additive set function.

For example, the Hausdor� dimension is a �-max-measure (see [17]). Further

information about these measures can be found in [13, 23].

The importance of null-additive positive monotone measures are stressed

also by many results, see [17, 23]. We shall only illustrate this on few cases.

Lebesgue decomposition type theorems are proved for null-additive and ��null-

additive set functions. It is introduced the notion of atoms for monotone set



functions, and it turns out that again null-additivity gives good description of

them. If the monotone null-additive set function is ��continuous with respect

to a measure �; then it can be represented by a monotone null-additive set

function de�ned on P(N); where N is the set of all natural numbers. For

null-additive exhaustive and order continuous set functions Saks decomposition

theorem is obtained.

Let m be a positive set function de�ned on a ��algebra �:

De�nition 5 Let m be a positive monotone set function on �: A set A 2 � is

called an atom provided that if B � A then

(i) m(B) = 0; or (ii) m(A) = m(B) and m(A nB) = 0:

Remark 1 For �-�nite fuzzy measure m; each its atom has always �nite mea-

sure. For null-additive monotone set functions we may suppose in (ii) only

m(A nB) = 0:

Theorem 3 Let m be a null-additive monotone set function which is exhaus-

tive. If each set E 2 �;m(E) > 0; contains an atom of m; then for each set

E 2 � there exist at most countable number of atoms Ei (i 2 I) of m such

that

m(E n [i2IEi) = 0:

Each set A 2 � contains at most countable number of di�erent atoms of m:

Let m and v be two null-additive set function.

Proposition 1 If m is v�continuous and null-additive, then each atom A of

v is also an atom of m proved m(A) > 0:

If for m there is no atom, m is called non-atomic.

There can exist a "vacant" atom which is at most a countable union of null

sets.

Example 2 Let X = N;� = P(X);m(E) = supE � inf E for E 6= ;; and

m(;) = 0: Then every two-point set A = fn1; n2g is an atom, and each proper

subset of A has m-null-measure. Note that the fuzzy measure space (X;�;m)

is ���nite, and that X is represented as a countable union of null sets.

For a monotone continuous measure space (X;�;m) we de�ne a subclass

N (m) of � as: E 2 N (m) if and only if E is at most a countable union [nEn

where m(En) = 0 (n 2 N):

For the measure m in Example 2, N (m) = � holds.

From now on a monotone continuous set function m should be understood

to be �-continuous for some measure � whenever the set N an P are mentioned.

However the following obvious proposition holds independent of the measure

�:



Proposition 2 (i) If m(E \ P ) = m(F \ P ) = 0 then m((E [ F ) \ P ) = 0;

(ii) if m is null-additive then m(N) = 0 and m(E \ P ) = m(E) for any

E 2 �:

By (i), such a vacant atom A as in Example 2 appears nowhere in P: The

opposite implication of the statement (ii) is not true, see [17].

De�ne

mP (E) = m(E \ P ) (E 2 �):

Let A be an atom of m with mP (A) > 0: If B � A and mP (B) > 0; then

m(B \ P ) = m(A) and m(AnB \ P ) = 0: Thus mP (A) � mP (B) = m(A)

and mP (AnB) � m(AnB \ P ) imply respectively that mP (B) = mP (A) and

mP (AnB) = 0: Therefore A is also an atom of mP : If m is null-additive in

addition, then mP (E) = m(E) for every E: Thus X = P may be assumed as

for as we concern with the atoms of null-additive set function.

Proposition 3 Suppose that A1 and A2 are atoms of mP: Then only one of

the relations

mP (A1 \ A2) = 0; mP (A1�A2) = 0

is possible.

The property of mP in Proposition 3 is common to additive measures, but

not to mN ; the restriction of m to N:

Example 3 Let X = N and � = P(X): Take a positive integer k; and de�ne

m(E) = 1 ^ [(jEj � k) _ 0]: Then N = X (i.e. mN = m); and any set A such

that k < jAj � 2k + 1 is an atom.

Take A1 = f1; 2; :::; 2k+ 1g and A2 = fk + 1; k + 2; :::; 3k + 1g: Then

A1 \A2 = fk + 1; :::; 2k + 1g and

A1�A2 = f1; :::; kg [ f2k + 2; :::; 3k + 1g;

and thus follows m(A1 \A2) = 1 = m(A1) = m(A2) while m(A1�A2) = 1:

Now we consider the family of all the �nite or countable in�nite unions of

atoms, and denote it by A(m):

Theorem 4 If m is an �-continuous positive monotone continuous set func-

tion, then there exists an element A 2 A(m) such that

(i) A 2 A(m) implies �(AnA) = 0 (maximality),

(ii) m is non-atomic on XnA; and

(iii) P \A is represented as a disjoint union of atoms fAn : n 2 Ng in the

sense of m((P \A)n([nAn)) = 0:



Theorem 5 Let m be an �-continuous monotone set function de�ned on �:

If m is null-additive, then there exist a map r : � \A! P(N) and monotone

measure v on (N;P(N)) such that

(i) r(X) = N; r(XnE) = Nnr(E) and r([jEj) = [jr(Ej );

(ii) m(E) = v(r(E)) for each E 2 � \A:

In other words the monotone measure space (A;�\A;m) is represented by

a simple fuzzy measure space (N;P(N); v):

Theorem 6 (Saks Decomposition) Let m be a null-additive set function, which

is �nite, exhaustive and order continuous or it is a �nite fuzzy measure. Then

for every A 2 � and every � > 0 there exists a �nite number A0; A1; :::; Ar of

pairwise disjoint elements of � such that

(i) A = [ri=0Ai; (ii) each Ai (i = 0,1,...,r) is either an atom of m

and m(Ai) > �; or m(Ai) � �:

Remark 2 It is easy to check that the preceding proof works also for �nite

concave exhaustive and order continuous set function, although it may not be

null-additive.

4 The Sugeno integral and the representation

of the comonotone-�_-additive functional

Let m be a monotone positive set function de�ned on a �-algebra �: The

Choquet integral of a non-negative measurable function f on A 2 � is given

by (see [5, 6, 17])

(C)

Z
A

f dm =

Z
1

0

m(A \ fx : f(x) � rg) dr:

Sugeno has introduced another integral on a set A � X

(S)

Z
A

f(x) dm = sup
r2[0;+1]

min[r;m(A \ fx : f(x) � rg)]:

CPT holds if there exist two fuzzy measures, �+ and ��, which ensure that

the utility functional L, model for preference representation, can be represented

by the di�erence of two Choquet integrals, i.e.,

L(f) = (C)

Z
f+ d�+ � (C)

Z
f� d��;

where f+ = f _ 0 and f� = (�f)_ 0. The functional L is de�ned on the class

of functions (prospects, alternatives) f : X �! R, mapping a state space X in

some subset of the real line. The f+ is called the gain part of the prospect f ,

and �f� is called the loss part of f .



There is a close connection between general functionals with such properties

and the Choquet integral. A real valued functional L on the class M of all

measurable functions is monotone if for all f; g 2 M with f � g we have

L(f) � L(g): We say that L is comonotonic additive if for all f; g 2 M which

are comonotonic, i.e., f(x) < f(x1)) g(x) � g(x1) (x; x1 2 X), we have L(f+

g) = L(f) +L(g): There was proved in [22] that a monotone and comonotonic

additive functional onM can be represented by a Choquet integral with respect

to a fuzzy measure. Narukawa proved in [16] that comonotone-additive and

monotone functional can be represented as a di�erence of two Choquet integrals

and gave the conditions for which it can be represented by one Choquet integral.

The Sugeno integral-based operator is one of the non-linear (w.r.t _) func-

tionals on the class of measurable functions which is comonotone-maxitive,

monotone and ^-homogeneous. The extension of the Sugeno integral to the

bipolar scale [�1; 1] in the spirit of the symmetric extension of Choquet inte-

gral, has been proposed by M. Grabisch in [12], and it is useful as a framework

for Cumulative Prospect Theory in an ordinal context.

We assume that X is an universal set. Let A be a �-algebra of subsets of

X: Let M(X) be a class of all measurable functions from X to [0; 1] and let

� : A �! [0; 1] be a normalized fuzzy measure.

We recall that the operation �_ is the symmetric maximum originally intro-

duced in [11] and which is de�ned by:

a�_b :=

8<
:
�(jaj _ jbj) ; b 6= �a and jaj _ jbj = �a or = �b;

0 ; b = �a;

jaj _ jbj ; otherwise;

The operation �̂ is symmetric minimum given by:

a �̂b :=

�
�(jaj ^ jbj) ; signa 6= sign b;

jaj ^ jbj ; otherwise:

We consider now the class K(X) = f f j f : X ! [�1; 1] g. The class of all

non-negative functions in K(X) is denoted by K(X)+:

Let X be a �nite set, X = fx1; x2; : : : ; xng, and let � : 2X �! [0; 1] be a

normalized fuzzy measure. Recall that two measurable functions f and g on X

are called comonotone [6] if they are measurable with respect to the same chain

C in A ( A is a �-algebra of subsets of X ). Equivalently, comonotonicity of the

functions f and g can be expressed as follows: f(x) < f(x1) ) g(x) � g(x1)

for all x ; x1 2 X .

Let X be a countable set, X = fx1; x2; : : : ; g and let Ks(X) be a class of

functions with �nite support, Ks(X) = f f j f : X ! [�1; 1] ; jsupp(f)j <1g

where the support of f is given by supp(f) = fx j f(x) 6= 0g.

For comonotone functions f; g 2 Ks(X) we have that f(x) > 0 implies

g(x) � 0.

Let L be a functional L : K(X) �! [�1; 1]: We introduce now the fuzzy

rank and sign dependent functional and comonotone-�_-additive functional.



De�nition 6 A functional L : K(X) �! [�1; 1] is a fuzzy rank and sign

dependent functional on K(X) if there exist two fuzzy measures �+ and ��

such that for all f 2 K(X)

L(f) =
�
(S)

Z
f+ d�+

�
�_
�
� (S)

Z
f� d��

�
;

where f+ = f _ 0 and f� = (�f) _ 0.

Note that in the case when �+ = �� and X is �nite the fuzzy rank and sign

dependent functional ( f.r.s.d. functional for short) is exactly the Symmetric

Sugeno integral. If the f.r.s.d. functional L is the Symmetric Sugeno integral

then we have

L(�f) = �L(f):

De�nition 7 Let L be a functional on K(X), L : K(X) �! [�1; 1]:

(i) L is comonotone-�_-additive i�

L(f �_g) = L(f)�_L(g) (3)

for all comonotone functions f; g 2 K(X).

(ii) L is monotone i�

f � g =) L(f) � L(g) (4)

for all functions f; g 2 K(X).

(iii) L is �̂-homogeneous i�

L(a �̂f) = a �̂L(f) (5)

for every f 2 K(X) and a � 0:

For a monotone and idempotent functional L we have that L(a � 1X) = a for

all a 2 [�1; 1]:

Proposition 4 A monotone and idempotent functional L on K(X) is
�̂-homogeneous.

Let X be a �nite set and L a functional L : K(X) �! [�1; 1]: Let C � X .

We de�ne two set functions �+L and ��L induced by the functional L:

�+L(C) := L(1C) and ��L (C) := �L(�1C) :

For A � B we have 1A � 1B and if monotonicity of L was supposed than we

obtain �+L(A) � �+L(B) and ��L (A) � ��L (B), i.e., �
+

L and ��L are the fuzzy

measures. Finally, from Proposition 2. we have the next result.

Theorem 7 [19] If L : K(X) �! [�1; 1] is an idempotent comonotone-�_-

additive and monotone functional on K(X), then L is a f.r.s.d functional, i.e.,

there exist two fuzzy measures �+L and ��L such that

L(f) =
�
(S)

Z
f+ d�+L

�
�_
�
� (S)

Z
f� d��L

�
:



A f.r.s.d. functional on K(X) is not always comonotone-�_-additive.

Example 4 Let X = f1; 2g. We take fuzzy measure � de�ned by

�(A) =

�
1 if A 6= ;;

0 if A = ;:

We consider the f.r.s.d. functional L de�ned by

L(f) =
�
(S)

Z
f+ d�

�
�_
�
� (S)

Z
f� d�

�
:

If we take comonotone functions f; g 2 K(X) de�ned by f(1) = 0:5; f(2) = 0

and g(1) = 0:5; g(2) = �0:5, respectively, then L(f) = 0:5 and L(g) = 0, but

L(f �_g) = 0.
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