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1 Introduction 

The class of plants having the transfer functions HP(s) expressed in terms of (1) or 
(2): 
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with TΣ – small time constant or time constant corresponding to the sum of parasitic 
time constants and TΣ < T2 < T1, characterize sufficiently well the controlled plants 
as part of servo systems. 

The paper is organized as follows. There are presented two methods (in Sections 2 
and 3) for optimal tuning of controller parameters in the case of controlling the 
plants (1) and (2). Then, Section 4 is dedicated to the presentation of a development 
method for a Mamdani fuzzy controller with dynamics. By accepting that the 
simplified dynamics of a mobile robot can correspond to the first transfer function 
in (1), there are developed in Section 5 three controllers, and there is performed 
the validation of the development methods and of the controller structures by 
digital simulations. 



2 Extended Symmetrical Optimum (ESO) Method 

In the case plants with the transfer functions of the forms (1) the use of a PI or PID 
controller having the transfer functions (3) and (4), respectively: 
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tuned in terms of Kessler’s Symmetrical Optimum (SO) method, can ensure 
acceptable performance [1]. 

In both cases, the open-loop transfer function H0(s) can be expressed as: 
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However, in some practical applications the control system performance – with the 
well-known quality performance indices: overshoot σ1≈43%, settling time ts≈16.3TΣ, 
first settling time t1≈3.7TΣ and phase margin φr≈36o – prove to be rather 
unacceptable. But, if the plant contains nonlinearities or variable parameters (this is 
the case of kP – the plant gain), the use of fuzzy controllers with dynamics can 
ensure control system performance enhancement. 

The values of these quality performance indices become unacceptable due to a large 
sensitivity with respect to the modification of kP accompanied by an alleviation of 
φr. This shortcoming can be much stronger if TΣ corresponds to the sum of parasitic 
time constants generally having taking only an approximated value. 

In [2] there was proposed an extension of Kessler’s SO method with large 
possibilities for application in the field of servo systems, in particular of electrical 
drives with possible variable moment of inertia. In this case the controlled plant is 
described by a transfer function of the form (1) with kP – often variable and TΣ – 
usually constant. The closed-loop transfer function Hw(s) with w (the reference 
input) as input and y (the controlled output) as output can be expressed in terms of 
(6): 
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The optimization conditions according to Kessler’s SO method were generalized in 
the following form [2]: 
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By using the equations (7), the transfer functions H0(s) and Hw(s) are re-expressed in 
their optimal forms (8): 
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It is fully justified to consider the expressions (8) as optimal ones because an 
optimization occurs indeed by the maximization of the phase margin in the case of 
constant values of kP. 

By the choice of the parameter β in the domain β ∈  (1, 20), the control CSPIs {σ1, 
ts

^ = ts/TΣ, t1
^ = t1/TΣ, φr} can be accordingly modified and a compromise between 

these performance indices can be reached by using the diagrams shown in Fig.1. 

 
Fig.1. Control system performance indices versus β. 

It can be observed that all coefficients in the closed-loop transfer function Hw(s)opt 
depend on the only one parameter β and that the PI and PID controller 
development is reduced to the choice of this parameter, β. 

On the basis of the generalized optimization conditions (7), the favorable equations 
for tuning the controller parameters are obtained: 
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The ESO method guarantees a minimum phase margin in the case of variable kP, 
kP∈ DP=[kPm,kPM], and the possibility for computing the value of kP

*, the “medium” 
value of kP, in terms of [2]: 

pMPmP kkk =*  , (10) 

exemplified for the speed control of variable inertia drives [3]. The application of 
the ESO method in this case enables the determination of the value of β that, for a 
variation domain of the parameter kP, guarantees a minimum accepted value φrm of 
the phase margin, φr ≥ φrm. 



The PI controller development with respect to w has been also performed and 
applied in [4], [5], where the behavior with respect to the disturbance input has 
been only reported. 

The ESO method can be applied also in the case of controllers with non-
homogenous information processing with respect to the controller input channels 
(w and y) [6] by suppressing the action of the zero in (8). In the case of controllers 
with homogenous information processing this can be done by adding two versions 
of reference filters [2]. 

3 Further Extension in Applying the ESO Method 

If the plant transfer function has one of the forms of (2), the use of a PI or PID 
controller tuned according to Kessler’s Modulus Optimum (MO) method [1] leads to 
good CS performance. Exceptions occur in the following two situations: 

 - the time constant T1 has very large value, T1 >> T2 > TΣ, when the controller 
implementation can rise some problems, and a PID controller is used, the second 
time constant of the plant, T2, is compensated by the time constant TC' of the 
controller: 

2
' TTc =  ; (11) 

 - the disturbance is fed to the plant input, when the rejection of the disturbance 
effects is done very slowly. 

For both plants in (2), the open-loop transfer function H0(s) obtains the form (12): 

)1)(1(
)1()(

1

0
0 sTsTs

sTksH c

++
+=

Σ

 ,  Pckksk =)(0  . (12) 

In such situations there are proposed two basic versions for treating the problem [7]: 

 - the use of a P or PD (eventually, lead-lag) controller tuned according to the 
Modulus Optimum (MO) method; the result is in a control system with non-zero 
static coefficient, which is often not acceptable; 

 - the use of a PI or PID controller tuned according to the Kessler’s SO method [1]; 
the large overshoot in this case is not a generally acceptable solution. 

An alternative solution with much better results consists in use of PI or PID 
controllers in the conditions of applying the optimization relations of the ESO 
method. These relations can be applied in the case of controllers with both 
homogenous and non-homogenous information processing. There will be presented 
as follows aspects concerning the development method in the case with homogenous 
information processing. 



For the plants (2) and HC(s) having the form (3) and (4), the coefficients in the 
transfer function Hw(s) (6) can be expressed as: 
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By applying the optimization equations (7) and introducing the notation (14): 

1/TTm Σ=  ,  1<<m  , (14) 

the equations for tuning the controller parameters result in terms of (15): 
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For several values m ∈  [0, 0.25] and β ∈  [4, 16] the expressions of kc and Tc as 
function of m can be organized in tabled forms; on the basis of these tables there 
can be drawn the correction diagrams of controller tuning parameters (kc and Tc), 
illustrated in Fig.2. These two diagrams outline the necessity for essential 
modifications in the values of the tuning parameters with respect to the case 
presented in the previous Section. 

 
Fig.2. Diagrams of kc and Tc versus m (kc0 and Tc0 correspond to m = 0). 

There are presented in [7] the expressions of the transfer functions H0(s)opt and 
Hw(s)opt, and aspects concerning the analysis with respect to the modification of 
the disturbance inputs and the application of the method to the case of non-
homogenous information processing. 



4 Development Method for a Mamdani PI-Fuzzy 
Controller 

The structure of the standard version of PI-fuzzy controller (PI-FC) with 
integration of the control signal is presented in Fig.3, and it is based on: 

 
Fig.3. Block diagram of standard PI-fuzzy controller. 

 - the numerical differentiation of the control error ek under the form of the 
increment of control error, Δek: 

1−−=∆ kkk eee  ; (17) 

with k – the index of the current sampling interval; 

 - the numerical integration of the increment of control signal, Δuk. 

The development of this controller starts with the development of a linear PI 
controller by using methods dedicated to conventional control systems; in the case 
of the plants (1), (2) it is recommended to use the methods presented in Section 2 
and Section 3. Then, there is expressed the discrete equation of the PI quasi-
continuous digital controller in its incremental (velocity type) version (18): 
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where the parameters {KP, KI, α} are functions of {kc, Tc}: 
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where Ts stands for the sampling period. 

For the strictly speaking fuzzy controller (the block FC in Fig.3), the fuzzification 
can be solved in the initial phase as follows: 

 - for the input variables ek, Δek: there are chosen 5 (or more, but an odd number) 
linguistic terms with regularly distributed triangular type membership functions 
having an overlap of 1; 

 - for the output variable Δuk there are chosen 7 linguistic terms with regularly 
distributed singleton type membership functions, Fig.4. 

Other shapes of membership functions can contribute to control system 
performance enhancement. 



The considered PI-FC represents a type-II fuzzy system according to [8], [9], 
having the specific parameters {Be, BΔe, BΔu}. These strictly positive parameters 
are in correlation with the shapes of the membership functions of the linguistic 
terms corresponding to the input and output linguistic variables. 

 
Fig.4. Shapes of membership functions for the standard PI-FC. 

The inference engine of the block FC employs the Mamdani’s MAX-MIN 
compositional rule of inference assisted by a complete rule base. The rule base of 
the block FC is expressed as decision table, and it is illustrated in Table 1. 

Table 1. Decision table of standard PI-FC-OI. 

Δek \ ek NB NS ZE PS PB 
PB ZE PS PM PB PB 
PS NS ZE PS PM PB 
ZE NM NS ZE PS PM 
NS NB NM NS ZE PS 
NB NB NB NM NS ZE 

For the standard version of PI-FC the defuzzification as part of the block FC is 
done by the center of gravity method. 

It has to be pointed out that the parameters of the basic linear PI controller (3), kc 
and Tc, are taken into consideration in {Be, BΔe, BΔu} by applying this method for 
tuning the FC parameters. The choice of the inference method and of the 
defuzzification method as well represents the user’s option. 

The development of the PI-FC is finalized by applying the modal equivalences 
principle [10] which can be expressed in terms of the development equations (20): 

ePe BKB =∆  ,  eIu BKB =∆  , (20) 

where the value of the parameter Be is chosen in accordance with the experience 
of the control systems specialist. 



5 Application 

For control problems in mobile robots including [11] trajectory tracking, path 
following and point stabilization, there are widely used several mathematical 
models including: 

 - kinematic models [12]; 

 - dynamic models [13-16]. 

These control problems belong to the general class of controlling nonsmooth or 
nonholonomic systems [17], [18]. 

Since the first model in (1) appears in more complex or simpler forms in the 
mentioned dynamic models, the robot control problems can be simulated by 
considering it as benchmark-type one-dimensional model [19]. On the other hand, 
the first transfer function in (1) is necessary for including the model of actuator 
dynamics and other supplementary dynamics because unmodeled dynamics is 
considered the major cause for chattering in real-life applications when sliding 
mode control is employed in robot control [20-22]. 

The considered case study is characterized by the first transfer function in (1), 
with the parameters kP =1 and TΣ = 1 sec. For controlling this plant, the considered 
control system structure is a conventional one, presented in Fig.5, where: C – 
controller, P – controlled plant, Fw – reference filter, w – reference input, w~ – 
filtered reference input, e – control error, u – control signal, y – controlled output, 
v1, v2, v3, v4 – possible disturbance inputs. 

 
Fig.5. Control system structure. 

The ESO method is applied in this case. It starts with choosing β = 2, ans the 
parameters of the PI controller will obtain the values kc = 0.3536, and Ti = 2 sec. 
Part of the digital simulation results are illustrated in Fig.6, in the following 
simulation conditions: a sinusoidal modification of w followed by a –0.5 step 
modification of v4 (after 80 sec), without using the filter Fw. The dash dotted line 
is used for w, the continuous line for y, and the dotted line for u. 

The sinusoidal modification of the reference input is suggestive for control 
problems in mobile robots. 

For the accepted case study, there is developed a PI-FC in terms of Section 4. The 
parameters of the PI-FC are Be = 0.3, BΔe = 0.03, BΔu = 0.0021, and the digital 
simulation results are presented in Fig.7 in the same simulation conditions as in 
the case of using the PI controller. 

The sliding mode controller is with PI action (sliding mode-PI controller, SM-PI-
C), with the structure presented in Fig.8, and the parameters are tuned to guarantee 



the sliding mode existence condition ( 0<σ⋅σ ! , with σ – the switching variable): 
c=1, U0=1, Ti=2. The digital simulation results for the control system with SM-PI-
C are presented in Fig.9 and Fig.10 in the accepted simulation conditions. 

 
Fig.6. Simulation results for the control system with PI controller. 

 
Fig.7. Simulation results for the control system with PI-fuzzy controller. 

 
Fig.8. Structure of control system with SM-PI-C. 



 
Fig.9. w and y versus time for the control system with SM-PI-C. 

 
Fig.10. Control signal versus time for the control system with SM-PI-C. 

6 Conclusions 

The paper presents aspects concerning the development of fuzzy controllers for 
servo systems. The development is based on applying two methods dedicated to 
conventional control systems and on applying the modal equivalences principle. 
The presentation is focused on PI-fuzzy controllers. 

The application illustrated in the paper can correspond to a servo system used in 
control problems related to mobile robots, and validates the presented 
development methods and controllers for further use in control of servo systems. 



Digital simulation results prove that when coping with sinusoidal modifications of 
the reference input and to step modifications of the disturbance input the PI-fuzzy 
controllers ensure the control system performance enhancement. This is also the 
problem of sliding mode controllers, but the chattering alleviation must be 
performed in this case; solutions for the given control system structure are the use 
of boundary layer approach [22] or of the discrete-time sliding mode approach 
[23], [24]. 

The paper proves the potential of the ESO method, of fuzzy controllers and of 
sliding mode controllers as attractive solutions in problems of mobile robot 
control. 
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