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Abstract: The main idea of behaviour-based control structures is to handle 
partially known complex situations by a set of known behaviours. By discrete 
switching to the behaviour seems to be the most appropriate one, or by fusing the 
behaviours appeared to be the most appropriate ones. These structures has two 
main tasks to solve. The decision about the level of suitability of the known 
behaviours in handling the actual situation, and the way of their fusing to form the 
actual behaviour. In this paper, for these tasks, a flexible structure, the fuzzy 
automaton based system state approximation and the interpolative fuzzy reasoning 
based fusion is suggested. For demonstrating the applicability of the suggested 
structure, a path tracking and collision avoidance navigation control of a 
simulated automated guided vehicle (AGV) is also introduced briefly in this paper. 
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1 Introduction 

In behaviour-based control systems (a good overview can be found in [3]), the 
actual behaviour of the system is formed as one of the existing behaviours (which 
fits best the actual situation), or a kind of fusion of the known behaviours 
appeared to be the most appropriate to handle the actual situation. This structure 
has two main tasks. The first is a decision, which behaviour is needed in an actual 
situation, and the levels of their necessities in case of behaviour fusion. The 
second is the way of the behaviour fusion. The first task can be viewed as an 
actual system state approximation, where the actual system state is the set of the 
necessities of the known behaviours needed for handling the actual situation. The 
second is the fusion of the known behaviours based on these necessities. 

The applicability of the behaviour-based control structures is based on the 
premise, that all the situations could possibly occur can be handled by a behaviour 
formed as a convex combination of the known (existing) behaviours. This case 



having the relevant behaviours (control strategies in case of control application) 
the behaviour-based control structure has the chance to form a suitable actual 
behaviour (control strategy). 

In the followings, first a simple and flexible fuzzy behaviour-based control 
platform based on the fuzzy automaton and the hierarchical interpolative fuzzy 
reasoning, then as one of its possible application areas, a vehicle navigation 
control will be briefly introduced. 

2 The Suggested Fuzzy Behaviour-based Structure 

The first task of the behaviour-based control is to determine the necessities of the 
known behaviours needed for handling the actual situation. In the suggested 
behaviour-based control structure, for this task the finite state fuzzy automaton is 
adapted (Fig.1.) [4]. This solution is based on the heuristic, that the necessities of 
the known behaviours for handling a given situation can be approximated by their 
suitability. And the suitability of a given behaviour in an actual situation can be 
approximated by the similarity of the situation and the prerequisites of the 
behaviour. (Where the prerequisites of the behaviour is the description of the 
situations where the behaviour is valid (suitable itself)). This case instead of 
determining the necessities of the known behaviours, the similarities of the actual 
situation to the prerequisites of all the known behaviours can be approximated. 
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Fig. 1. The applied behaviour-based control structure 



Thus the first step of the system state approximation is determining the similarities 
of the actual situation to the prerequisites of all the known behaviours – applying 
the terminology of fault classification, it is the symptom evaluation (see e.g. 
Fig.1.). The task of symptom evaluation is basically a series of similarity checking 
between an actual symptom (observations of the actual situation) and a series of 
known symptoms (the prerequisites – symptom patterns – of the known 
behaviours). These symptom patterns are characterising the systems states where 
the corresponding behaviours are valid. Based on these patterns, the evaluation of 
the actual symptom is done by calculating the similarity values of the actual 
symptom (representing the actual situation) to all the known symptoms patterns 
(the prerequisites of the known behaviours). There are many methods exist for 
fuzzy logic symptom evaluation. For example fuzzy classification methods e.g. 
the Fuzzy c-Means fuzzy clustering algorithm [1] can be adopted, where the 
known symptoms patterns are the cluster centres, and the similarities of the actual 
symptom to them can be fetched from the fuzzy partition matrix. On the other 
hand, having a simple situation, the fuzzy logic symptom evaluation could be a 
fuzzy rule based reasoning system itself. One of the main difficulties of the system 
state approximation is the fact, that most cases the symptoms of the prerequisites 
of the known behaviours are strongly dependent on the actual behaviour of the 
system. Each behaviour has its own symptom structure. In other words for the 
proper system state approximation, the approximated system state is needed itself. 
A very simple way of solving this difficulty is the adaptation of fuzzy automaton. 
This case the state vector of the automaton is the approximated system state, and 
the state-transitions are driven by fuzzy reasoning (Fuzzy state-transition rulebase 
on Fig.1.), as a decision based on the previous actual state (the previous iteration 
step of the approximation) and the results of the symptom evaluation. The basic 
structure of the rulebase applied for the state-transitions of the fuzzy automaton 
(rules for interpolative fuzzy reasoning) for the ith state Si (RAi) can be the 
following: 

If Si=One And Si-Si=One  Then Si=One     (1) 
If Si=One And Si-Sk=One  Then Si=Zero 
If Sk=One And Sk-Si=One  Then Si=One 
If Sk=One And Sk-Si=Zero Then Si=Zero 
where Si-Sk is the conclusion of the symptom evaluation about the state-
transition from state i to k, [ ], N is the number of known behaviours (state 
variables). The structure of the state-transition rules is similar for all the state 
variables. Zero and One are linguistic labels of fuzzy sets (linguistic terms) 
representing high and low similarity. The interpretations of the Zero and One

N,1k∈∀

 
fuzzy sets can be different in each Si, Si-Sk universes. The reason for the 
interpolative manner of fuzzy reasoning is the incompleteness of state-transition 
rulebase [2]. 

 



In case of having a simple situation, where fuzzy logic rule based symptom 
evaluation can be applied, the fuzzy symptom evaluation (rulebase) could be 
integrated to the state-transition rulebase of the fuzzy automaton (as it was done in 
the example application of this paper). 

The conclusion of the system state approximation (the approximated state itself) is 
a set of similarity values, the level of similarities of the actual situation and the 
prerequisites of the known behaviours. Applying these similarities as the level of 
necessities for fusing the known behaviours, the actual behaviour can be formed. 

In case of fuzzy behaviour fusion, the following rulebase can be used for the 
fusion of the conclusions of the different behaviours:    (2) 

If S1=One And S2=Zero And...And SN=Zero Then y=y1 
If S1=Zero And S2=One And...And SN=Zero Then y=y2 
 ... 
If S1=Zero And S2=Zero And...And SN=One Then y=yN 
where Si is the ith state variable, yi is the conclusion of the ith behaviour and y is 
the fused conclusion. Zero and One are linguistic labels of fuzzy sets (linguistic 
terms) representing high and low similarity. The interpretations of these fuzzy sets 
can be different in each Si universes.  

Instead of fuzzy reasoning a kind of weighted average, (where the weights are 
functions of the corresponding similarities) is also applicable (even it is not so 
flexible in some cases). E.g.: 
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where ii Sw =  is the weight and yi is the conclusion of the ith behaviour, y is the 
fused conclusion. 

3 A vehicle navigation control example 

For introducing some of the possible application areas of the proposed fuzzy 
behaviour-based control structure, a simulated steering control of an automated 
guided vehicle (AGV) [6], [7], [8] is briefly introduced. In the example 
application the steering control has two main goals, the path tracking (to follow a 
guide path) and the collision avoidance. The simulated AGV is first trying to 
follow a guide path, and in the case if it is impossible (because of the obstacles) 
leave it, and as the collision situation is avoided try to find the guide path and 



follow it again. A simulated path sensing system senses the position of the guide 
path by special sensors (guide zone) tuned for the guide path. The goal of the path 
tracking strategy is to follow the guide path by the guide zone with minimal path 
tracking error on the whole path (see Fig.2.).  

 
Fig. 2. Differential steered AGV with guide zone, δ is the path tracking error, ev is the distance of the 

guide path and the guide point, Pv is the guide point, K is the driving centre, RL, RR, RM are the 
distances measured by the left, right and middle ultrasonic sensors (UL, UR, UM). 

In the collision avoidance strategies, two different collision situations, the frontal 
and the side collision are distinguished. Having the preconditions of motionless 
obstacles, it is sufficient to have three ultrasonic distance sensors (on the front of 
the AGV, one in the middle (UM) and one-one on both sides (UL, UR) (see Fig.2.)) 
to approximate both the collision conditions [7]. Having the preconditions of 
motionless obstacles, the obstacle distance measurements of the near past can be 
used for scanning the boundaries of the obstacles. Collecting the previous 
measurements of the left and right obstacle sensors and the corresponding 
positions of the AGV (measured by the motion sensors on the wheels), the 
boundaries of the obstacles can be approximated by discrete points [7]. These 
points are called unsafe, or risky points. The distance measured by an obstacle 
sensor means the existence of a potential obstacle outside the circle defined by the 
position of the sensor and the measured value (see e.g. on Fig.3.). Having more 
measurements and more positions, the boundaries of the obstacles can be traced 
by the pair by pair point of intersections of these circles (called “unsafe” points 
[7], see e.g. on Fig.3.). The main idea of the side collision avoidance part of the 
strategies is to avoid side collisions to obstacles by avoiding side collisions to 
unsafe points. For having observations easier to handle then numerous unsafe 
points, the actual maximal left and right turning angle without side collision (αML, 
αMR) is calculated [7]. 

 



 
Fig. 3. The obstacles boundaries approximated by discrete unsafe points, R is the distance measured by 

the sensor P, and UP is the unsafe (risky) point. 

The first stage of building the suggested behaviour-based control structure is to 
build the component behaviours. The simplest way of defining these strategies is 
based on describing the operator’s control actions. These control actions could 
form a fuzzy rulebase. In the example – using interpolative fuzzy reasoning for 
direct fuzzy control – constructing the fuzzy rulebase is very simple. It is not 
necessary to build a complete fuzzy rulebase; it is enough to concentrate on the 
main control actions, by simply adding rules piece by piece. Having the simulated 
model of the controlled system, the performance of the controller can be checked 
after each step. In the following simulated example, all the rulebases introduced, 
and the corresponding fuzzy partitions (not introduced) were generated in such a 
manner. Starting from a heuristic rulebase and fuzzy partition structure, after some 
trial and error style modification, a “working” strategy was achieved (the first 
strategy fulfilling the task of the studied strategy). Then the working strategy was 
tuned in its own environment. For tuning the working strategy, a simple genetic 
method was adapted, for modifying the fuzzy partitions only (see more detailed in 
[7]), to get an at least locally better solution than the original one.  

In the example, there are four different known behaviours [8]: 

Path tracking and restricted collision avoidance strategy: The main goal of this 
strategy is the path tracking (to follow a guide path) and as a sub goal, a kind of 
restricted (limited) collision avoidance [7]. (Here the restricted collision avoidance 
means, “avoiding obstacles without risking the chance of loosing the guide path”.) 
The basic idea of the path tracking strategy is very simple: keep the driving centre 
of the AGV as close as it is possible to the guide path, then if the driving centre is 
close enough to the guide path, simply turn the AGV into the new direction. 
Adding the collision avoidance, this simple strategy needs seven observations: 
Two for the path tracking: the distance between the guide path and the driving 
centre (ev), and the distance between the guide path and the guide point (δ). And 
five for the collision avoidance: the distances measured by the left middle and 
right ultrasonic sensors (RL, RM, RR) and the approximated maximal left and right 
turning angle without side collision (αML, αMR). Based on these observations two 
conclusions are needed: the speed (Va) of the vehicle and the level of steering 
(Vd). In implementation it takes two rulebases, one for the steering RVd and one 
for the speed Rva. 



The ith rules of the steering rulebase has the following form (RVd,i): 

If ev=A1,i And δ=A2,i And RL=A3,i And RR=A4,i And RM=A5,i And αML=A6,i And 
αMR=A7,i  Then Vd=Bi . 

Having a simulated model of the AGV and a trial guide path, only 12 rules are 
sufficient for controlling the steering (RVd) and 5 is needed for the speed (RVa): 

RVd: ev δ RL RR RM αML αMR Vd 
1., NL       PL 
2., PL       NL 
3., NM Z     L PL 
4., PM Z    L  NL 
5., NM PM L  L L  Z 
6., PM NM  L L  L Z 
7., Z PM L  L L  NS 
8., Z NM  L L  L PS 
9., Z PM S  S   PL 

10., Z  NM  S S   NL 
11., Z Z L S S   NL 
12., Z Z S L S   PL 

 
RVa: ev δ RL RR RM Va 

1., Z Z L L L L 
2., NL PL    Z 
3., PL NL    Z 
4., NL Z    Z 
5., PL Z    Z 

where the meanings of the linguistic labels are: N: negative, P: positive, L: large, 
M: middle, Z: zero. 

The collision avoidance strategy: The second known behaviour is a simple 
collision avoidance steering strategy. Its only goal is to avoid collisions. Having 
the simulated model of the AGV after some trial, the following rules for 
controlling the steering (RVd) and for the speed (RVa) were gained: 

RVd: RL RR RM αML αMR Vd 
1.,  Z  L  NL 
2., Z    L PL 
3.,  Z L S  NVS 
4., Z  L  S PVS 

 
RVa: RL RR RM Va 

1., L L L L 
2.,   S S 

where the meanings of the linguistic labels are: N: negative, P: positive, L: large, 
M: middle, S: small, VS: very small, Z: zero. 

The collision avoidance with left/right tendency strategy: The next two behaviours 
are basically the same as the collision avoidance steering strategy, expect the left 

 



or right turning tendencies in case of no left or right turning difficulties. These 
strategies are needed to aid finding the path after leaving it (because of the fail of 
the first strategy). Their rulebases are the same as the rulebases of the collision 
avoidance strategies, except one additional rule, which causes the left/right turning 
tendencies in collision free situations. The additional rule for the right tendency to 
the collision avoidance steering strategy (RVd) is the following: 

RVd: RL RR RM αML αMR Vd 
1-4., … … … … … … 

5.,  L L  L PL 

The additional rule for the left tendency to the collision avoidance steering 
strategy (RVd): 

RVd: RL RR RM αML αMR Vd 
1-4., … … … … … … 

5., L  L L  NL 

The example application is so simple, that it does not need separate symptom 
evaluation. The function of the symptom evaluation is built to the state-transition 
rulebase of the fuzzy automaton. Having four known behaviours, the automaton 
has four state variables. These are the approximated level of similarity of the 
actual system to the prerequisites of the path tracking and restricted collision 
avoidance strategy (SP), to the prerequisites of the collision avoidance strategy 
(SC), to the prerequisites of the collision avoidance strategy with right tendency 
(SCR), and left tendency (SCL). Having four conclusions, four state-transition 
rulebases are needed. The RSP state-transition rulebase is determining the next 
value of the SP state variable, RSC is for determining SC, RSCR for SCR, and RSCL 
for SCL. The observations of the state-transition rulebases are the observations 
introduced in the path tracking and partial collision avoidance strategy, the state 
variables themselves (SP,SC,SCR,SCL), and a new observation (PV), signing if the 
path sensing is available. The state-transition rulebases for interpolative fuzzy 
reasoning are the followings [8]: 
RSP:  
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
    Z V   L   L 
    PL V     S Z 
    NL V    S  Z 
     NV      Z 

RSC: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
     V   S   L 
     V   L   Z 
     NV      Z 



RSCR: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
L    NVL V      L 
  L   NV      L 
    Z V   L   Z 
   L        Z 

RSCL: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
L    PVL V      L 
   L  NV      L 
    Z V   L   Z 
  L         Z 

where the meanings of the linguistic labels are: N: negative, P: positive, VL: very 
large, L: large, S: small, Z: zero, V: path valid, NV: path not valid. 

The conclusions of the four known behaviours are fused by the rulebase 
introduced in (2). Having the behaviours alike the behaviour fusion implemented 
on interpolative fuzzy reasoning, the behaviours together with the behaviour 
fusion forms a hierarchical interpolative fuzzy reasoning structure. 

Conclusions 

The goal of this paper was to introduce a simple and flexible fuzzy behaviour-
based control structure through its vehicle navigation control application example.  

The suggested structure is based on fuzzy interpolative fusion of different known 
behaviours in the function of their actual necessities approximated by fuzzy 
automaton. It is an easily built and simply adaptable structure for many 
application areas (see e.g. [9] as an application area in user adaptive emotional and 
information retrieval systems). 

Fig.4-7. are introducing some results of the simulated vehicle navigation 
application. The results show, that in the tested situation the suggested structure 
was able to fuse the known behaviours in the expected manner. 

The main benefits, both the simplicity and the situation adaptivity of the 
behaviour-based control structures are inherited from their hierarchical 
construction. This hierarchy has the meaning of building a (more) global strategy 
from some relevant, but only partially valid (with respect to the state space of the 
system) strategies. The suggested fuzzy behaviour-based control structure is 
simply fusing these strategies to form one strategy, which has an extended area of 
validity. This way a rather complicated strategy can be modularly built. 

The benefit of adapting fuzzy automaton for system state approximation in the 
proposed structure is to give (state) memory to the system. On one hand, this 
memory is needed for the correct symptom evaluation; on the other hand, it is able 
to hold a kind of “history” information (e.g. left, or right turning tendency strategy 
decision of the example). 
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Fig. 4. Track of a single run in case of curved guide path and one obstacle.  
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Fig. 5. Time function of observations, conclusions and system state values (SP, SC, SCL, SCR) related to 

the track of Fig.4. (See strategy descriptions above for notation.)  
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Fig. 6. Track of a single run in case of straight guide path and one obstacle in the path centre.  
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Fig. 7. Time function of observations, conclusions and system state values (SP, SC, SCL, SCR) related to 

the track of Fig.6. (See strategy descriptions above for notation.)  
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