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Cancer treatments

Surgical oncology

e the tumor cells can be totally removed (zero-order kinetics)
* tumor can be recurrent in many cases

Chemotherapy
e uses drugs to destroy cancer cells
acts in general ways (by killing rapidly dividing cells)
* have many side effects
* tumor cells can become resistant to chemotherapy drugs

Radiotherapy

» destroy cancer cells with radiation
* actsin general ways (by killing rapidly dividing cells)
* have many side effects

Targeted molecular therapies (TMTs)

* fight specifically against different cancer mechanisms
* can be more effective and have limited side effects
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Antiangiogenic therapy

Tumor vasculogenesis

e start of the proliferation 2
avascular nodule (dormant)

* limitation of oxygen and nutrients =
tumor development stops

* angiogenic switch = exponential tumor growth

Antiangiogenic therapy

* prevent tumors from
forming new blood vessels

* without angiogenesis
tumor growth is inhibited
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Cancer protocols in the light of the dosage problem

1. intermittent bolus doses administration % %\ % %\

v’ patient receives drug on given days
v’ therapy has rest periods
v injected amount of boluses can be

a) maximum tolerated dose (MTD) _ |_| |—| |_|

v' length of the rest periods depends on the amount of boluses
v’ disadvantage:
a) itinvolves re-growth of tumor cells
b) resistant to the therapy
b) low-dose metronomic (LDM) regimen
v low doses over prolonged periods without extended rest periods
v advantages: antitumor efficacy, reduced acute toxicities
v’ disadvantage: empiricism associated with determining the optimal
biologic dose (OBD)

time (days)
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Cancer protocols in the light of the dosage problem

2. continuous infusion therapy

v’ applicable within clinical environment
v’ not yet as a portable device

v’ prolonged delivery

a) cell encapsulation systems
* microencapsulated in vivo releasing
endostatin was biologically active and
significantly inhibited the migration of
endothelial cells
b) mini-osmotic pumps o F
 continuous administration was more M
effective (97% inhibition of tumor
growth) than daily bolus doses (66%),
using the same dosage

L1
T T T

time (days)
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Interdisciplinary design

Medical

knowledge

general protocols

find more effective solutions in healing

of the patient individual treatment for the patient

model-based protocols
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The (control) problem

Antiangiogenic therapy

Protocols for medical

Therapy with a controller
treatment

controller design for
appropriately-low tumor
volume

. aim:

often unknown efficacy low t |

ow tumor volume
minimizes the input signal as
far as possible

constant drug dosage dosage
& & 8 » less side effects
greater cost-effectiveness
individual therapy is e s model uncertainti n
. Py difficulties odel uncerta t.|esa d
not possible measurement noise
? solution for difficulties modern robust control
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Methodology

ENGINEERING SIDE

MEDICAL SIDE
= Animal experiments
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Previously investigated tumor growth model

e P. Hahnfeldt et al. (1999)

—A1xy - In (:_:)

2/,
bx;,—d-x; -"x,—ex,g

y =X

X1 : tumor volume (mm?3)

X2 : endothelial volume (mm?)

g : concentration of the
administered inhibitor (mg/kg).

Yolume [m m:’]

“olume [m m:’]
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Simulation results of robust control

Comparison of the outputs
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Animal experiments

Tumor Tumor o
implantation/ volume Sacrificing Tumor sample
i rocessin
Bevacizumab measurement mice, P g
.. ) remove tumor .
administration H&E staining -

¥ L

I )
Pyt g el
¥ 3 e
i v &
R
.

Immunohistochemistry
staining

J. Sapi, D. A. Drexler, I. Harmati, A. Szeles, B. Kiss, Z. Sapi, and L. Kovacs, “Tumor growth model identification and analysis
in case of C38 colon adenocarcinoma and B16 melanoma”, in Proc. SACI 2013 Timisoara, Romania, pp. 303-308
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The importance of accurate tumor volume estimation

* measurement of volume is necessary to monitor
v’ the progression of the disease
v’ the efficiency of the given therapy
Caliper
v" width and length can be measured, but the third
dimension is estimated
v tumor volume is approximated assuming a shape
(e.g. ellipsoid)
v' in the case of irregular tumor structure, it may
result in significant error in tumor volume

Magnetic Resonance Imaging (MRI)
v" non-invasive, does not use ionizing radiation
v' computes the precise location, shape and
orientation of the tumor mass
v’ expensive
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The importance of accurate tumor volume estimation

Models estimating tumor volume based on
caliper measurements

e three dimensions:
length (1), width (w), height (h)

Xenograft tumor
model protocol

Ellipsoid shape V=

Two-dimensional model V = A e (1-w)3/?

J Sépi, L Kovdcs, D A Drexler, P Kocsis, D. Gajari, and Z Sapi (2015). “Tumor
Volume Estimation and Quasi-Continuous Administration for Most Effective
Bevacizumab Therapy” PLoS ONE 10:(11) PAPER E0142190. 20 P. (2015)
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The importance of accurate tumor volume estimation

Inthe casze of caliper measurement

Inthe case of caliper measurement
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Finding the effective dosage for optimal therapy

Phase |
p=0.572 without therapy p =0.002

daily 1/180 dosage

is more effective
than one large dose

7000

w |

T
werage of Phase |

Phase |||/3 control group Em, S U OIS RS IO SIS UL S SN S Phase |||/3 case group
therapy based on B therapy with daily
the protocol o e ] administration
(200 pg) L N (1.11 pg)
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Motivation of new tumor growth model identification

Tumor vascularization

(©) c
5 === Lindothelial cell
t e <= Apoptotic endothelial cell
c (WD A = = CEP
f am Tip cell
SRR S e Y
g 5 & Pericyte - SMC
A <. Fibroblast
g B Tumor cell
PAS - Laminin
1% Necrotic area

(D) 1 2 | Auguste P, Lemiere S,
Larrieu-Lahargue F,
Bikfalvi A, Molecular
mechanisms of tumor

\ vascularization.
/ Crit Rev Oncol
s iy Hematol. 2005

Apr;54(1):53-61.

(A) Endothelial Sprouting; (B) Intussusceptive Microvascular Growth (IMG); (C) Postnatal
Vasculogenesis; (D) Vessel Co-Option; (E) Mosaic vessels; (F) Vasculogenic Mimicry.

New, non-sprouting vascularization methods which are not taken
into account in Hahnfeldt model 2 outdated model
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What can we offer for medical doctors?

* alternatives for optimal, personalized

Evaluated criterion: total
concentration of the administered
inhibitor during the treatment (mg/kg)

saturation: 25 mg/kg
saturation: 15 mg/kg
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protocols based on multi-criteria
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Evaluated criterion: steady state
ftumor volume at the end of the

treatment (mm’)

saturation: 25 mg/kg
saturation: 15 mg/kg

J Sapi, D A Drexler, | Harmati, Z Sapi, and L Kovacs (2015). “Qualitative analysis of
tumor growth model under antiangiogenic therapy — choosing the effective
operating point and design parameters for controller design”. OPTIMAL CONTROL
APPLICATIONS AND METHODS 37:(5) pp. 848-866. (2016)
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saturation: 13 mg/kg
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