IEEE CANDO EPE 2020

Spatial distribution of photon flux density created by LED grow lights

László BALÁZS and József NÁDAS Kálmán Kandó Faculty of Electrical Engineering Institute of Microelectronics and Technology

- 1. Differences between general and horticultural lighting
- 2. Optimization of LED lights for 1 m \times 1 m plant growth units

Physical quantities for humans and plants

Measurement challenges for narrowband LED

High Pressure Sodium Lamp

Narrowband LED

Specifying spectra

General Lighting

Horticultural Lighting

- **CCT**
- CRI

Converting luminous intensity distribution to photon intensity distribution

Assumption: Relative Spectral power distribution is constant

Luminous intensity distribution

Photon Intensity distribution

Application differences LEDs can be placed closer to plants than HPS lamps

HPS toplight height > 2m

LED vertical farming height < 0.5 m

Point source vs. linear array with same photon intensity distribution

LED array PPF = $4 \times 2.5 \mu mol/s$ Beam angle: 120°

Calculating photon flux density

Comparing PPFD distributions

Photon Flux Density in the optical axis as a function of height

Greenhouse lighting PPFD in 1m × 1m cells

Green house lighting optimization 120° beam angle

Optimum gap size

Thank You for Your Attention!

