

Budapest University of Technology and Economics High Voltage Laboratory

Time Domain Spectroscopy of Low Voltage Nuclear Power Cables Under Simultaneous Thermal and Mechanical Aging

Ramy S. A. Afia, Ehtasham Mustafa, Tamus Zoltán Ádám

Department of Electric Power Engineering Group of High Voltage Technology and Equipment ramy.afia@vet.bme.hu

IEEE Conference and Workshop, 18 – 19 November 2020 | Óbuda University, Budapest, Hungary

Agenda

- Background
- Objectives
- Dielectric Spectroscopy
- Concept of the Extended Voltage Response (EVR)
- EVR measurement setup & circuit representation
- Experimental work: Samples, combined aging, and experimental setup
- Results & Discussion
- Conclusion

Background

- According to Many international reports, the role of the nuclear power plants in the energy generation market is increasing day by day.
- NPPs supplies around 11% of the world's electricity and around of 25% of the electricity in OECD countries.
- The reliability and safety of these plants relies on many components and all these components should function properly during the normal operation conditions and the accident conditions.
- Cables in NPPs provides the link between the transducing, instrumentation and control systems that monitor these plants.
- Cables are not only subjected to high radiation levels but also, they suffers from electrical, mechanical and thermal stresses.
- These stresses affects the insulation integrity of these cables or in other words causing aging. Therefore, the insulation state of these cables must be monitored.

Objectives

- Investigating the effect of thermal aging
- Non-Destructive condition monitoring
- Electrical testing, EVR "Extended Voltage Response"
- Aging markers
- Insulation state

Dielectric Spectroscopy

Time Domain Spectroscopy

Frequency Domain Spectroscopy

- tanδ
- Capacitance
- Impedance

• Permittivity

EVR Measurement Setup

7

Experimental Work

1. Specimens

- 1 Tin-coated copper conductor
- XLPE core insualtion
- 3 CSPE outer jacket
- Rated voltage: 1 kV.
- Insulation thickness: 1.143 mm.
- Jacket thickness: 0.762 mm.
- Outer diameter: 8.636 mm.

2. Accelerated Aging

- Mechanical bending: IEEE 383.
- Mandrel diameter: 150 mm.
- Oven temperature: 120 °C.
- Combined aging: 779 hours.

Experimental Work...Cont.

3. Experimental Setup

Earth connection

Right side view of voltage generation & control unit

voltage

Results & Discussion

- Charging voltage: 1 kV
- Charging time: 4000 sec
- > Discharging time: from 1 to 2000 sec

Results & DiscussionCont.

- > The return voltage slope decreased with the aging time increased.
- The reduction in the return voltage slope suggest the domination of the cross-linking reaction in addition to the role of the compressive stress which tends to create duple bonds.
- In addition, the jacketing material undergo dehydrochlorination when subjected to thermal stress.

Results & DiscussionCont.

- The decay voltage slope slightly increased with the aging period increased.
- Due to the thermal stress, the generation of free radicals is enhanced.
- The free radicals tends to increase the conductivity of the dialectic material.
- This process was inhibited by the mechanical stress and the antioxidants.

Conclusion

- Chemical and physical changes have been occurred in the insulation due to thermal and mechanical stress
- Chemical structure: Re-Cross- linking & Dehydrochlorination
- Combined thermal mechanical stress, S_r decreased & S_d increased
- Polarization process decreased
- S_d and S_r could be used as Electrical Aging markers

Thank you for your attention!

Ramy Afia Budapest, Hungary H-1111, Egry József u. 18. Tel.: +36 20 273 2723 E-mail: <u>ramy.afia@vet.bme.hu</u>

