

CANDO 2020 Investigation of Rogowski Current Sensors for Appliances Classification in NILM

Pirmin Held

November 2020

- 1. Introduction to NILM
- 2. Measurement System
- 3. Feature Extraction and Classification
- 4. Results
- 5. Conclusion

The idea of NILM

Structure of NILM

Measurement System

- Comparison of current sensors
 - AC Current Transformer: TT 50-SD
 - Primary nominal current rms: 50 A
 - Split core type
 - Diameter for wire: 8mm
 - Bandwidth (± 1dB) 50/60 Hz
 - Rogowski coil: Metrawatt Metraflex 3003
 - Primary nominal current rms: 30/300/3000 A
 - flexible current sensors
 - Diameter for wire: ≈200 mm
 - Bandwidth 10 Hz ... 20 kHz

Illustration of the current-sensors to be evaluated. The conventional current transformers: LEM TT50SD (left) and the Rogowski coil Metraflex 3003 (right)

Measurement System

- Two measuring systems were set up in parallel
- Current and voltage were measured
- The current was measured with the Rogowski coil and with the conventional current transformer

Measurement setup of NILM systems with a Rogowski coil and conventional current transformers.

Measurement

- 20 devices have explicitly been switched on and off
- Current and voltage curves were recorded
- Each device was turned on and off 50 times
- Sampling frequency of 14 kHz
- Resolution of 16 bit (at a maximum current of 64 A)

$$I_{res} = I_{max}/2^{15} = 2.76 \text{ mA}$$

 $I_{max} = 64 \text{ A} \cdot \sqrt{2} = 90.5 \text{ A}$

TABLE I DEVICE LIST

Dev. No.	Name	P(W)
1	Hairdryer (setting 2)	1155
2	Radio	6.2
3	Hair Straightener	56
4	Heat Gun (setting 1)	820
5	Router	9.2
6	Desk Lamp	20
7	Kettle	2100
8	Hairdryer (setting 1)	500
9	Heat Gun (setting 2)	1603
10	Fan	22
11	Multifunction Tool (Dremel [®])	30
12	LED lamp	1
13	Vaccum cleaner (Kobolt)	210
14	W-Lan Range extender TP-link TL-W850RE	1.4
15	Fan	22
16	Fan	22
17	Gray Desk Lamp	23
18	Laptop	60
19	Flex Bosch GWS 18 230	1800
20	Flex Hitachi	840

Feature Extraction

FIT-PS Procedure

- a) using the zero crossings voltage to detect one period
- b) define new equidistant sampling positions
- c) interpolation of the current signal
- d) reshape the signal

Signal Analysis using FIT-PS

- Two steady states with a transient state between
- Only small variations along *I* direction in the dimensions *k* during the steady state
- Clear separation between the steady state and the transient state
- FIT-PS shows the difference of both steady states within one period

High Sampled Signals

High Sampled Signals

Example of FIT-PS signal

- Example of FIT-PS signal representation of device No. 7
- Example of FIT-PS signal representation of device No. 5

- The figures show the FIT-PS feature with a characteristic current shape of a kettle and a router.
- Measured simultaneously with a Rogowski coil and a conventional current transformer

Results of the classification with all devices

- 100 on/off events
- Low-pass filter (Kaiser window)
- Stop-band attenuation: 80dB
- Pass-band ripple is 0.01 dB
- The pass-band edge frequency is adjusted from 50 Hz to 5 kHz.
- Classification is realized using k-Nearest-Neighbor (k=3)

Results of the classification with all devices

 Confusion matrix of the conventional current transformers at *fc*=300 Hz normalized to the amplitude Confusion matrix of the Rogowski coil at *fc*=300 Hz normalized to the amplitude

Results of the classification without identical devices

- With the achieved results, the conventional current transformers mainly showed errors with the three identical fans.
- For this reason, only one of the three fans is used. Thus, 18 devices needs to be classified.
- The error with normalized features of the Rogowski coil is zero for frequencies equal or higher 250 Hz. The error of the conventional current transformer is with 1.3 % significantly higher.

Thank you for your attention

Pirmin Held phe@hs-furtwangen.de