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Neuromorphic Speech Classification Based on 
EEG Signals

J. Neural Eng. 11 (2014) & Scientific Reports 5 (2015)



Background
 Neurolinguistics - Neural mechanisms of language processing
 Perception of speech sounds is categorical. 

 Previous studies on the neural correlates of categorical perception have 
used mismatch negativity (MMN). 
 Event-related potential (ERP) that occurs in response to an 

infrequent change in a repetitive sequence of stimuli 
 Brain’s capability to perform automatic comparisons between 

successive stimuli 

 Most studies try to elicit the MMN to identify the brain’s capability for 
phoneme change detections, by averaging over multiple trials and 
subjects.
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Background
 In this study, we intend to discriminate the brain responses to three 

Korean vowels /a/, /i/ and /u/ for each trial, 
 Auditory steady-state response (ASSR) - based paradigm  
 Pattern recognition 
 Signal processing techniques. 

 To find components related to phoneme representation 
 To discriminate EEG responses on a single trial basis

Objectives
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Background
 Dutch vowel sound are presented: /a/, /i/, and /u/

 by 3 native Dutch speakers (2 female, 1 male) 
 During one-back task

 Speaker grouping and Vowel grouping for the 
analysis 
 Speaker Grouping: sp1 vs. sp2, sp1 vs. sp3, 

sp2 vs. sp3 
 Vowel Grouping: /a/ vs. /i/, /a/ vs. /u/, /i/ vs. 

/u/
 Accuracies were obtained by averaging results of 

the respective 3 binary comparisons.
 P2 Interval : Largest average accuracies 

 During both the speaker and vowel grouping. 

Hausfeld et al. Neuroimage. 2012.
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Vowel Stimuli Selection
 Phonemes with different formant 

frequencies (F2) evoke different 
levels of MMN.

 Tongue body positions for 
/u/, /i/, and /a/ are high-back, 
high-front, and low-back, 
respectively.

 Large difference in their formant 
frequencies

/a/, /i/, /u/ were selected for evoking distinct brain responses

Naatanen R et al 1997

Stevens 2000
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Data Acquisition and Experiment
 64-channel EEG device (Electrical Geodesics, Inc.)

 International 10-20 system
 Sampling rate : 256Hz

Stimuli were randomly presented 

A pre-stimulus interval of 0.5s
for baseline correction

A post-stimulus interval of 1.5s 
for preventing an overlap of brain responses

90 trials in a single session, 2 sessions
Total 180 trials per subject.

/a/, /i/, /u/
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Overall Procedure for EEG Classification

IIR band-pass filter
(8-30 Hz)

Decomposing with MEMD

Selecting IMF - alpha band

Comparing the results
• MEMD
• CWT
• IIR

CSP filter 

LDA as a classifier

 IIR band-pass filter (8-30 Hz)
 Decomposing EEG data into intrinsic 

mode functions(IMFs) by Multivariate 
Empirical Mode Decomposition (MEMD).

 Selecting IMFs which were dominant in 
the alpha band.

 Comparing the results of the MEMD, IIR 
band-pass filter, and continuous wavelet 
transform (CWT).

 Using CSP filter after those algorithms 
for enhancing the classification 
performance.

 Using LDA as a classifier.
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Frequency Band Selection Using MEMD
 Empirical mode decomposition (EMD) – fully data-driven method for 

time-frequency analysis of non-stationary and nonlinear signals.
 Main idea – iterative sifting procedure which decomposes a signal in a 

sum of IMFs.

 Criteria for an IMF

1. The numbers of extrema and zero-crossings are the same or differ at most 
by one.

2. The mean of the envelopes defined by maxima and the envelopes defined 
by minima is 0 over the entire region. It means that the envelopes have to be 
symmetric with respect to zero.
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Frequency Band Selection Using MEMD
 EMD is only useful for analyzing univariate time-series signals, not for 

multivariate time-series signals.
 MEMD should be adopted for analyzing multivariate signals such as 

high-density multichannel EEG.

 Critical procedure of MEMD is calculating the local mean.
 by averaging multiple multi-dimensional envelopes by projecting 

the multivariate signal along different directions
 difficult to select suitable direction vectors.
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Common Spatial Pattern Filter (CSP)
 Widely used for extracting the features from EEG data for BCI
 The purpose is to find the spatial filters 

 maximize the variance of signals in a class 
 minimize the variance in the other class at the same time 

 for the discrimination of two populations.

 Let the single-trial EEG data be represented as an 𝑁𝑁 × 𝐿𝐿 matrix 𝐸𝐸, 
where N is the number of channels and L is the number of sample points.

 First, EEG signals should be mean subtracted.
 The normalized spatial covariance of E can be acquired from

𝑪𝑪 =
𝑬𝑬𝑬𝑬𝑇𝑇

𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑬𝑬𝑬𝑬𝑇𝑇)

where T means the transpose operator and trace is the sum of the diagonal 
elements of the matrix.

 The spatial covariance          is obtained by averaging over the normalized spatial 
covariance matrices of all trials for each task group, /a/ or /i/. 
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Linear Discriminant Analysis (LDA)
 Optimal linear combination of features which differentiates the classes.
 Assumption: the distribution of observations or feature vectors is Gaussian 

with equal covariance matrix (∑) for both classes.
 The likelihood of the observation x with a class 𝑦𝑦𝑖𝑖 in m dimensions can be 

computed as

𝑝𝑝 𝒙𝒙 𝑦𝑦𝑖𝑖 = 𝑁𝑁 𝒖𝒖𝑖𝑖 ,∑ =
1

(2𝜋𝜋)𝑚𝑚/2 ∑ 1/2 𝑒𝑒𝑒𝑒𝑒𝑒 −
1
2
𝒙𝒙 − 𝒖𝒖𝑖𝑖 𝑇𝑇∑−1 𝒙𝒙 − 𝒖𝒖𝑖𝑖

 𝒖𝒖𝑖𝑖 and ∑ are mean vector and covariance matrix of observation with 
class 𝑦𝑦𝑖𝑖 , respectively.

 In case of two class classification, discriminant function can be computed as
g𝑖𝑖𝑖𝑖 = g𝑖𝑖 𝑥𝑥 − g𝑗𝑗 𝑥𝑥 = ln 𝑝𝑝 𝐱𝐱 𝑦𝑦𝑖𝑖 𝑃𝑃 𝑦𝑦𝑖𝑖 − ln 𝑝𝑝 𝐱𝐱 𝑦𝑦𝑗𝑗 𝑃𝑃 𝑦𝑦𝑗𝑗 = 𝐰𝐰𝑇𝑇𝐱𝐱 + 𝐛𝐛

 Projection vector w and bias term b are computed using training set.

𝐰𝐰𝑇𝑇 = ∑−1(𝒖𝒖𝑖𝑖 − 𝒖𝒖𝑗𝑗) 𝑇𝑇

 The LDA classifier assigns an observation vector of test to the class label 
according to sign(𝐰𝐰𝑇𝑇𝐱𝐱 + 𝐛𝐛)
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Time-Freq. Analysis - Grand Average

 Statistically different alpha band 
power in both right and left 
temporal areas between the 
three experimental conditions

 Distinct responses for the three 
vowels in the temporal region of 
topography
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Time-Freq. Analysis – Single Trials

 Much of the alpha band 
power in almost all trials is 
statistically different 
between the three 
experimental conditions.

 We assumed that alpha 
band components are 
related to our stimuli
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Classification of Real EEG Recordings
 10-fold cross validation was applied 
 MEMD showed better overall classification accuracies than CWT and IIR band-

pass filter. (one-tailed t-test p<0.01)
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Consideration 
 Using ASSR-based paradigm which provided time-series information
 Most of the alpha band power of grand-averaged EEG was statistically 

different between the three experimental conditions 
 alpha bands might be speech-related responses

 MEMD-based classification extracted the speech-related more precisely 
than the conventional methods such as CWT, BPF.

 In future studies, we expect to apply our approach to a brain–computer 
interface (BCI) technology aimed at allowing patients who cannot move 
spontaneously to communicate by using their brain signals.

 Possibility of using vowel speech sounds instead of pure tone sounds in 
ASSR-based BCI system.

 For clinical fields such as diagnosis and rehabilitation for people with 
speech and language disorders.
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Hardware Neural Network

 Effective method of processing large datasets: pattern recognition, classification, 
and clustering
 Software-realized artificial neural network (ANN)’s operating speed is insufficient for 

increasingly complex networks. 
 Hardware neural network (HNN) has a clear speed advantage.

 Currents limitation of HNN
 Analogue circuits require too much power
 Digital approaches use too many transistors in a single synaptic device

 To make advanced HNNs, synaptic devices must satisfy two condition
1. simple, two-terminal architecture - allowing high density to be achieved via a cross-

point array
2. The weight of the devices should change gradually with the bias voltage, and the rate 

at which the weight increases and decreases should be symmetric.

Artificial Neural Network (ANN) 
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Hardware Neural Network

 Memristive synapses have simplicity and functional similarity to a 
synapse. 

 Phase-change memory (PRAM), conductive-bridge memory (CBRAM), 
and oxide based memory (RRAM) have memristive characteristics

 The conducting filament formation of current memristive synapse 
causes significant variations in resistance
 Preventing the desired gradual and symmetric change in conductance

Expectation

Limitation
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Hardware Neural Network
 Neuromorphic system for visual pattern recognition 

 PCMO-based memristor array and CMOS image sensor (CIS) 
 The system has been successfully demonstrated by training and 

recognizing number images from 0 to 9. 

Recognition rates for various noisy patternsProposed neuromorphic system

Chu et al. IEEE Transactions on Industrial Electronics. 2015.

Noise level
(No. of noise 

pixel/30)
Recognition rate

0% 100%

3% 95%

10% 85%

16% 55%
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Hardware Neural Network
 In the present study,

 High-density cross-point memristive synapse array with improved 
synaptic characteristics 

 Describe a learning scheme to mitigate the unintended switching 
problem often encountered with cross-point arrays

 The conductance of the proposed system changes more gradually and 
symmetrically in the presence of voltage pulses above a certain 
threshold voltage.
 Otherwise the synapse retains its conductance

 The first primitive prototype of an electronic system that utilizes a 
cross-point memristive synapse array for EEG pattern recognition.

Implication of the study
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EEG Experiment: Speech Imagery
 Using 64-channel EEG device by Electrical Geodesics, Inc.
 Following international 10-20 system, electrodes were located.
 Sampling rate : 250Hz

 Total length of each trial is 3.5s.
 100 trials for each syllable.
 IIR band-pass filter (8-30 Hz) -> Baseline correction -> MEMD -> CSP  

-> Binarization

Experimental paradigm
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Structure and Fabrication of Memristive
Synapses

Cross-point memristive synapse array

Si wafer cleaning
SiO2 oxide layer

Pt bottom electrodes 

Polycrystalline PCMO film 

Top electrode patterning, 
consisted of TiNx, AlOx and Pt

SiNx layer 

Hole and BE pad patterning
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System Description

 Mainly realized in software 
 Captures EEG signals
 Extract the distinct features of 3 vowels
 Convert into a series of 32-bit binary 

code for the 32 pre-neurons to generate 
a spike signal.

 Single-layer neural network 
 32 pre-neurons
 192 memristive synapses
 6 post-neurons

 Pre-neurons are hard-coded into a FPGA  
 Synaptic interconnection: 192 memristive

synapses in a cross-point synapse array 
 Post-neurons : a leaky integrate-and-fire 

neuron

1st Block

2nd Block
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EEG Analysis of Imagined Speech

 Segmentation of data into each 
condition & trial 

 Artifact rejection
 Time-lock analysis

 Average the EEG data over all trials for 
each condition

 Time-Frequency analysis with Morlet
wavelet
 The alpha band (8-12 Hz) activities of 

each vowel are distinct

 Source localization using a Laplacian-
weighted current density estimator 
 The current sources of the data were 

located close to Broca’s and Wernicke’s 
area 
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EEG Analysis of Imagined Speech
 Feature extraction for the classification by memristive system

 IIR band-pass filter - Butterworth order: 5, bandwidth: 8–30 Hz

 Baseline correction using pre-stimulus period to eliminate residual noise 
 Independent Component Analysis to eliminate artefacts 
 Multivariate Empirical Mode Decomposition 

 Decompose the EEG data into intrinsic mode functions (IMFs)

 Common Spatial Pattern Filter 
 Enhance the classification performance

 Binarize the extracted feature for input to the H/W
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Considerations for Implementing a 
Cross-Point Memristive Synapse Array

 For the simplicity of the architecture of HNN
 Identical pulses 
 simple cross-array structure with two terminals.

 Responses of Advanced synaptic behavior in both potentiation and 
depression 
 Gradual
 Symmetric

New process to minimize the inhomogeneous barrier 

28
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Memristive HNN Learning
 The firing neuron is predetermined 

by the label data 
 synaptic weights are updated 

by feature codes, allowing the 
predetermined neuron to fire. 

 Proposed learning requires two 
operation phase 
 potentiation and depression.

 The spike signals applied to the 
top electrode (TE) and bottom 
electrode (BE) are determined 
according to label data and feature 
codes.

29
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Memristive HNN Testing and Classification

 In testing mode, applied feature 
codes to the memristive HNN 
are recognized by the decision 
logics based on the output 
signals of the post-neurons.

 Like the learning mode, the 
testing mode requires two 
operation phases, integrating 
and refractory.
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Memristive HNN Testing and Classification
 Post neuron: leaky integrate-and-

fire neuron, including a comparator
and inverting leaky integrator 

 As soon as the integrator output 
drops below a neuron’s threshold 
voltage, the comparator output 
generates a high value and the 
neuron is assumed to have fired.

 After the integrating phase has 
completed, the refractory phase 
starts.

 In refractory phase, the charge on 
the integration capacitor needs to 
be fully discharged through the 
leaky path to prepare the neuron 
for the next feature code.
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Discussion
 The first electronic memristive HNN system 

for EEG pattern recognition

 Cross-point memristive synapse array using 
a 200 mm wafer scale

 Impressive classification results with speech 
imagery data for vowels 

 Future direction 
 High density memristive HNN
 Overcoming the scalability, connectivity, 

and synaptic density challenges
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Part II.
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Multiclass EEG Discrimination with Speech 
Imagination (Vowels and Words)

Biomed. Res. Int. (2016) & IEEE Trans. Biomed. Eng. (2018)



Vowel Imagination 
 Vowels: /a/, /e/, /i/, /o/, and /u/ (plus mute)

 Silent speech BCI?

 Five healthy subjects (5 males; mean age: 28.25 ± 2.71, range: 26-32)
 5 sessions with 10 trials for each syllable and mute
 Experimental design: e-Prime 2.0 software
 A HydroCel Geodesic Sensor Net with 64 channels
 Net Amps 300 amplifiers (Electrical Geodesics, Inc., Eugene, OR, USA)

 1000 Hz sampling rate; 1-100 Hz bandpass-filtered
 IIR notch filter (Butterworth; order 4; bandwidth 59-61 Hz)
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Vowel Imagination
 Data preprocessing

 3s epoch
30 time segments with a 0.2s length and 0.1s overlap
6(conditions)×50(trials)×30(blocks) = 9000 samples

 Features
Mean, variance, standard deviation, skewness
4(features)×60(channels) = 240(dimension of feature vector)

 10-fold cross-validation
 LASSO sparse regression model based feature selection
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Figure 2



Vowel Imagination
 Classifiers

 Extreme learning machine (ELM)
A type of feedforward neural network
High speed and good generalization performance compared to 

the classic gradient-based learning algorithms
Randomly assigned input weights
Analytically calculated output weights

ELM with linear kernel (ELM-L)
ELM with radial basis function (EML-R)

 Support vector machine with radial basis function (SVM-R)
 Linear discriminant analysis (LDA)
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Figure 3

Figure 4
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Figure 5
Figure 6



Word Imagination
 Imagined words: ‘go’, ‘back’, ‘left’, ‘right’, and ‘stop’
 Eight healthy Korean Participant (2 women and 6 men, mean age: 27.13 

±3.30; range 22-32)
 100 EEG responses for each word during three separate sessions.
 Preprocessing

 1.5s epochs time-locked to the onset of each task (pre-stimulus: 0.5s)
 Automatic artifact removal (±100μV), baseline correction with pre-

stimulus interval
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Word Imagination
 Feature extraction

 ICA-based artefact removal & time-series reconstruction
 Four features

Covariance Based Features (CF)
Maximum Linear Cross-correlation (MaxCOR)
Phase-only time-series: Phase-only CF, Phase-only MaxCOR

 Channel selection
 CS1: left inferior frontal lobe (Broca’s Area)
 CS2: left superior temporal lobe (Wernicke’s Area)
 CS3: CS1 + CS 2
 CS4: whole brain

 Classifier: ELM (comparison: SVM-L, SVM-RBF, K-NN, Random Forest)
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Figure 4

(a) delta frequency band

(b) alpha frequency band
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Part III.
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Future Study Direction



Future Research Direction
 Clinical Application

 Neurorehabilitation for aphasia patients combined with brain 
stimulation (tDCS, TMS)

 Language training for language disorder patients

 Brain Computer Interface
 Silent speech BCI
 Combination with other paradigm (e.g., motor imagery, P300 speller)

 Collaborate with Language Processing Research

 Collaborate with Neuromorphic & Deep Neural Network Research
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My Lab (BMSSA) & Other Researches
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Other Research Fields
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EEG-Based Epilepsy Prediction

EMG-Based Prosthetic Hand Control

EMG-Based Pinch-to-Zoom HCI
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HRV-Based Delirium Prediction

Stress Level Detection in VR

ADHD Discrimination with ELM 
using sMRI and fMRI
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Thank you !
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