#### Erasmus 2018

#### Electroencephalographic Study for Human Speech Processing

2018.10.

Gwangju Institute of Science and Technology (GIST) Department of Biomedical Science and Engineering

Boreom Lee (M.D., Ph.D.)

#### Outlines

Part I. Neuromorphic Speech Classification via EEG Signals

Part II. Multiclass EEG Discrimination with Speech Imagination (Vowels and Words)

#### Part III. Future Study Direction

Part IV. My Lab (BMSSA) & Other Researches

#### Part I.

#### Neuromorphic Speech Classification Based on EEG Signals

J. Neural Eng. 11 (2014) & Scientific Reports 5 (2015)

## Background

- Neurolinguistics Neural mechanisms of language processing
- Perception of speech sounds is categorical.
- Previous studies on the neural correlates of categorical perception have used mismatch negativity (MMN).
  - Event-related potential (ERP) that occurs in response to an infrequent change in a repetitive sequence of stimuli
  - Brain's capability to perform automatic comparisons between successive stimuli
- Most studies try to elicit the MMN to identify the brain's capability for phoneme change detections, by <u>averaging over multiple trials and</u> <u>subjects</u>.

### Background

- In this study, we intend to discriminate the brain responses to three Korean vowels /a/, /i/ and /u/ for each trial,
  - Auditory steady-state response (ASSR) based paradigm
  - Pattern recognition
  - Signal processing techniques.

#### Objectives

- To find components related to phoneme representation
- To discriminate EEG responses on a single trial basis

## Background

- Dutch vowel sound are presented: /a/, /i/, and /u/
  - by 3 native Dutch speakers (2 female, 1 male)
  - During one-back task
- Speaker grouping and Vowel grouping for the analysis
  - Speaker Grouping: sp1 vs. sp2, sp1 vs. sp3, sp2 vs. sp3
  - Vowel Grouping: /a/ vs. /i/, /a/ vs. /u/, /i/ vs. /u/
- Accuracies were obtained by averaging results of the respective 3 binary comparisons.
- P2 Interval : Largest average accuracies
  - During both the speaker and vowel grouping.





Hausfeld et al. Neuroimage. 2012.

# **Vowel Stimuli Selection**

- Phonemes with different formant frequencies (F2) evoke different levels of MMN. Naatanen R et al 1997
- Tongue body positions for /u/, /i/, and /a/ are high-back, high-front, and low-back, respectively.
- Large difference in their formant frequencies Stevens 2000



**Figure 1.** Formant frequencies of vowels. Data points for /i/, /u/, /a/ and /a/ are averages from Peterson and Bamey (1952).

#### /a/, /i/, /u/ were selected for evoking distinct brain responses

# **Vowel Stimuli Selection**

- Phonemes with different formant frequencies (F2) evoke different levels of MMN. Naatanen R et al 1997
- Tongue body positions for /u/, /i/, and /a/ are high-back, high-front, and low-back, respectively.
- Large difference in their formant frequencies Stevens 2000



**Figure 2.** The time course (first row) and the linear predictive coefficient (LPC) spectra (second row) of three Korean vowels used in our experiment. The peaks of LPC spectra refer to the formant frequencies of speech signals. Vowel /a/ shows peaks at  $F_1 = 951$  Hz,  $F_2 = 1285$  Hz, and  $F_3 = 2722$  Hz; vowel /i/ at  $F_1 = 270$  Hz,  $F_2 = 2703$  Hz, and  $F_3 = 3430$  Hz; and vowel /u/ at  $F_1 = 258$  Hz,  $F_2 = 740$  Hz, and  $F_3 = 2819$  Hz. All stimulus amplitudes were normalized to the range [-1, 1].

#### /a/, /i/, /u/ were selected for evoking distinct brain responses

# **Data Acquisition and Experiment**

- 64-channel EEG device (Electrical Geodesics, Inc.)
- International 10-20 system
- Sampling rate : 256Hz



90 trials in a single session, 2 sessions Total 180 trials per subject.

#### **Overall Procedure for EEG Classification**

MEMD

CWT

IIR

- IIR band-pass filter (8-30 Hz)
- Decomposing EEG data into intrinsic mode functions(IMFs) by Multivariate Empirical Mode Decomposition (MEMD).
- Selecting IMFs which were dominant in the alpha band.
- Comparing the results of the MEMD, IIR band-pass filter, and continuous wavelet transform (CWT). feature
- Using CSP filter after those algorithms for enhancing the classification performance.
- Using LDA as a classifier.



### **Frequency Band Selection Using MEMD**

- Empirical mode decomposition (EMD) fully data-driven method for time-frequency analysis of non-stationary and nonlinear signals.
- Main idea <u>iterative sifting procedure</u> which decomposes a signal in a sum of IMFs.
- Criteria for an IMF
  - 1. The numbers of extrema and zero-crossings are the same or differ at most by one.
  - 2. The mean of the envelopes defined by maxima and the envelopes defined by minima is 0 over the entire region. It means that the envelopes have to be symmetric with respect to zero.

### **Frequency Band Selection Using MEMD**

- EMD is only useful for analyzing <u>univariate</u> time-series signals, not for multivariate time-series signals.
- <u>MEMD</u> should be adopted for analyzing <u>multivariate</u> signals such as high-density multichannel EEG.
- Critical procedure of MEMD is <u>calculating the local mean</u>.
  - by averaging multiple multi-dimensional envelopes by projecting the multivariate signal along different directions
  - difficult to select suitable direction vectors.

# **Common Spatial Pattern Filter (CSP)**

- Widely used for extracting the features from EEG data for BCI
- The purpose is to find the spatial filters
  - maximize the variance of signals in a class
  - minimize the variance in the other class at the same time
    - ► for the discrimination of two populations.
- Let the single-trial EEG data be represented as an  $N \times L$  matrix E, where N is the number of channels and L is the number of sample points.
- First, EEG signals should be mean subtracted.
- ► The normalized spatial covariance of E can be acquired from

$$\boldsymbol{C} = \frac{\boldsymbol{E}\boldsymbol{E}^T}{trace(\boldsymbol{E}\boldsymbol{E}^T)}$$

where 7 means the transpose operator and trace is the sum of the diagonal elements of the matrix.\_

The spatial covariance  $\overline{C}_{f \in [/a/,/i/]}$  is obtained by averaging over the normalized spatial covariance matrices of all trials for each task group, /a/ or /i/.

#### Linear Discriminant Analysis (LDA)

- Optimal linear combination of features which differentiates the classes.
- Assumption: the <u>distribution of observations or feature vectors</u> is <u>Gaussian</u> with equal covariance matrix ( $\Sigma$ ) for both classes.
- The likelihood of the observation x with a class y<sub>i</sub> in m dimensions can be computed as

$$p(\mathbf{x}|y_i) = N(\mathbf{u}_i, \Sigma) = \frac{1}{(2\pi)^{m/2} |\Sigma|^{1/2}} exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{u}_i)^T \Sigma^{-1}(\mathbf{x} - \mathbf{u}_i)\right)$$

•  $u_i$  and  $\sum$  are mean vector and covariance matrix of observation with class  $y_i$ , respectively.

In case of two class classification, discriminant function can be computed as

$$g_{ij} = g_i(x) - g_j(x) = \ln(p(\mathbf{x}|y_i)) P(y_i) - \ln(p(\mathbf{x}|y_j)) P(y_j) = \mathbf{w}^T \mathbf{x} + \mathbf{b}$$

Projection vector w and bias term b are computed using training set.

$$\mathbf{w}^T = \left(\sum^{-1} (\boldsymbol{u}_i - \boldsymbol{u}_j)\right)^T$$

• The LDA classifier assigns an observation vector of test to the class label according to sign $(\mathbf{w}^T \mathbf{x} + \mathbf{b})$ 

#### Time-Freq. Analysis - Grand Average

Statistically different alpha band power in both right and left temporal areas between the three experimental conditions

 Distinct responses for the three vowels in the temporal region of topography



# Time-Freq. Analysis – Single Trials

- Much of the alpha band power in almost all trials is statistically different between the three experimental conditions.
- We assumed that alpha band components are related to our stimuli



# **Classification of Real EEG Recordings**

- 10-fold cross validation was applied
- MEMD showed better overall classification accuracies than CWT and IIR bandpass filter. (one-tailed *t*-test *p*<0.01)</p>

| Subject    | Feature  | /a/vs/i/                            | /a/vs/u/                            | /i/vs/u/                            | Overall                             |
|------------|----------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| <b>S</b> 1 | BPF      | $62.50 \pm 10.51$                   | $63.82 \pm 14.63$                   | $55.97 \pm 16.42$                   | $60.76 \pm 12.25$                   |
|            | CWT      | $65.77 \pm 9.97$                    | $61.45 \pm 17.23$                   | $58.18 \pm 11.02$                   | $61.80 \pm 11.61$                   |
|            | IMF2     | $\textbf{71.41} \pm \textbf{10.62}$ | $67.46 \pm 9.78$                    | $67.89 \pm 8.09$                    | $68.92 \pm 8.59$                    |
| S2         | BPF      | $60.36 \pm 10.24$                   | $60.00 \pm 8.23$                    | $62.95 \pm 17.81$                   | $61.10 \pm 11.09$                   |
|            | CWT      | $59.25 \pm 15.12$                   | $61.52 \pm 7.11$                    | $63.11 \pm 16.60$                   | $61.29 \pm 12.44$                   |
|            | IMF2     | $\textbf{72.16} \pm \textbf{11.85}$ | $69.02 \pm 10.61$                   | $\textbf{69.41} \pm \textbf{7.59}$  | $\textbf{70.19} \pm \textbf{9.89}$  |
| S3         | BPF      | $73.82 \pm 15.86$                   | $52.31 \pm 12.47$                   | $52.20 \pm 13.13$                   | $59.44 \pm 12.62$                   |
|            | CWT      | $67.91 \pm 13.91$                   | $56.35 \pm 8.33$                    | $56.02 \pm 14.56$                   | $60.09 \pm 11.76$                   |
|            | IMF2     | $\textbf{74.00} \pm \textbf{12.29}$ | $65.90 \pm 9.10$                    | $70.12 \pm 13.75$                   | $\textbf{70.00} \pm \textbf{11.17}$ |
| S4         | BPF      | $68.91 \pm 10.83$                   | $63.45 \pm 12.16$                   | $58.43 \pm 12.90$                   | $63.59 \pm 11.26$                   |
|            | CWT      | $68.13 \pm 15.63$                   | $64.38 \pm 11.11$                   | $56.00 \pm 10.61$                   | $62.83 \pm 11.65$                   |
|            | IMF2     | $\textbf{75.85} \pm \textbf{14.38}$ | $\textbf{71.29} \pm \textbf{10.11}$ | $67.50 \pm 10.49$                   | $71.54 \pm 10.76$                   |
| S5         | BPF      | $60.00 \pm 14.14$                   | $44.91 \pm 12.05$                   | $68.18 \pm 10.08$                   | $57.69 \pm 11.69$                   |
|            | CWT      | $61.00 \pm 15.95$                   | $55.91 \pm 23.07$                   | $63.73 \pm 13.37$                   | $60.21 \pm 16.56$                   |
|            | IMF2 + 3 | $\textbf{71.00} \pm \textbf{14.49}$ | $65.45 \pm 12.76$                   | $71.27 \pm 16.62$                   | $69.24 \pm 13.72$                   |
| <b>S</b> 6 | BPF      | $62.79 \pm 17.16$                   | $55.39 \pm 14.97$                   | $60.73 \pm 19.76$                   | $59.63 \pm 16.62$                   |
|            | CWT      | $65.88 \pm 17.64$                   | $63.46 \pm 11.47$                   | $51.00 \pm 16.79$                   | $60.11 \pm 14.5$                    |
|            | IMF2     | $\textbf{71.43} \pm \textbf{13.29}$ | $69.68 \pm 11.59$                   | $\textbf{69.45} \pm \textbf{15.79}$ | $\textbf{70.18} \pm \textbf{13.15}$ |
| S7         | BPF      | $58.48 \pm 13.78$                   | $65.17 \pm 13.96$                   | $57.31 \pm 10.34$                   | $60.32 \pm 11.84$                   |
|            | CWT      | $49.09 \pm 17.12$                   | $53.89 \pm 11.82$                   | $61.28 \pm 16.40$                   | $54.75 \pm 15.03$                   |
|            | IMF2     | $\textbf{69.21} \pm \textbf{15.78}$ | $64.86 \pm 13.12$                   | $\textbf{68.95} \pm \textbf{15.46}$ | $\textbf{67.67} \pm \textbf{13.87}$ |

### Consideration

- Using ASSR-based paradigm which provided time-series information
- Most of the <u>alpha band power</u> of grand-averaged EEG was statistically different between the three experimental conditions
  - alpha bands might be speech-related responses
- MEMD-based classification extracted the speech-related more precisely than the conventional methods such as CWT, BPF.
- In future studies, we expect to apply our approach to a brain–computer interface (BCI) technology aimed at allowing patients who cannot move spontaneously to communicate by using their brain signals.
- Possibility of using <u>vowel speech sounds</u> instead of pure tone sounds in <u>ASSR-based BCI system</u>.
- For <u>clinical fields</u> such as diagnosis and rehabilitation for people with speech and language disorders.

Artificial Neural Network (ANN)

- Effective method of processing large datasets: pattern recognition, classification, and clustering
  - Software-realized artificial neural network (ANN)'s operating speed is insufficient for increasingly complex networks.
  - ► Hardware neural network (HNN) has a clear speed advantage.
- Currents <u>limitation of HNN</u>
  - Analogue circuits require too much power
  - Digital approaches use too many transistors in a single synaptic device
- ► To make advanced HNNs, <u>synaptic devices must satisfy two condition</u>
- 1. simple, <u>two-terminal</u> architecture allowing high density to be achieved via a crosspoint array
- 2. The <u>weight of the devices</u> should <u>change gradually</u> with the bias voltage, and the rate at which the weight increases and decreases should be <u>symmetric</u>.

#### Expectation

- Memristive synapses have simplicity and functional similarity to a synapse.
- Phase-change memory (PRAM), conductive-bridge memory (CBRAM), and oxide based memory (RRAM) have memristive characteristics

#### Limitation

- The conducting filament formation of current memristive synapse causes significant variations in resistance
  - Preventing the desired gradual and symmetric change in conductance

Neuromorphic system for visual pattern recognition

- PCMO-based memristor array and CMOS image sensor (CIS)
- The system has been successfully demonstrated by training and recognizing number images from 0 to 9.



- In the present study,
  - High-density cross-point memristive synapse array with improved synaptic characteristics
  - Describe a learning scheme to mitigate the unintended switching problem often encountered with cross-point arrays
- The conductance of the proposed system changes <u>more gradually and</u> <u>symmetrically</u> in the presence of voltage pulses above a certain threshold voltage.
  - Otherwise the synapse retains its conductance

#### Implication of the study

The first primitive prototype of an electronic system that utilizes a cross-point memristive synapse array for EEG pattern recognition.

# **EEG Experiment: Speech Imagery**

- Using 64-channel EEG device by Electrical Geodesics, Inc.
- Following international 10-20 system, electrodes were located.
- Sampling rate : 250Hz



- ▶ Total length of each trial is 3.5s.
- ▶ 100 trials for each syllable.
- IIR band-pass filter (8-30 Hz) -> Baseline correction -> MEMD -> CSP -> Binarization

# Structure and Fabrication of Memristive Synapses

#### Cross-point memristive synapse array



Si wafer cleaning SiO<sub>2</sub> oxide layer

Pt bottom electrodes

Polycrystalline PCMO film

SiN<sub>x</sub> layer

Hole and BE pad patterning

Top electrode patterning, consisted of TiN<sub>x</sub>, AIOx and Pt



# **System Description**

#### 1<sup>st</sup> Block

- Mainly realized in software
  - Captures EEG signals
  - Extract the distinct features of 3 vowels
  - Convert into a series of 32-bit binary code for the 32 pre-neurons to generate a spike signal.

#### 2<sup>nd</sup> Block

- Single-layer neural network
  - ▶ 32 pre-neurons
  - 192 memristive synapses
  - ▶ 6 post-neurons
- Pre-neurons are hard-coded into a FPGA
- Synaptic interconnection: 192 memristive synapses in a cross-point synapse array
- Post-neurons : a leaky integrate-and-fire neuron





Figure 1. Proposed memristive HNN system for EEG pattern recognition. Schematic illustrations and images of components for a proposed electronic system with memristive synapse. It can be categorized by two approaches: EEG preprocessing and implement of memristive hardware neural network.

# **EEG Analysis of Imagined Speech**

- Segmentation of data into each condition & trial
- Artifact rejection
- Time-lock analysis
  - Average the EEG data over all trials for each condition
- Time-Frequency analysis with Morlet wavelet
  - The alpha band (8-12 Hz) activities of each vowel are distinct
- Source localization using a Laplacianweighted current density estimator
  - The current sources of the data were located close to Broca's and Wernicke's area



# **EEG Analysis of Imagined Speech**

Feature extraction for the classification by memristive system

- ► IIR band-pass filter Butterworth order: 5, bandwidth: 8–30 Hz
- Baseline correction using pre-stimulus period to eliminate residual noise
- Independent Component Analysis to eliminate artefacts
- Multivariate Empirical Mode Decomposition
  - Decompose the EEG data into intrinsic mode functions (IMFs)
- Common Spatial Pattern Filter
  - Enhance the classification performance
- ▶ Binarize the extracted feature for input to the H/W



#### Considerations for Implementing a Cross-Point Memristive Synapse Array

- For the simplicity of the architecture of HNN
  - Identical pulses
  - simple cross-array structure with two terminals.
- Responses of Advanced synaptic behavior in both potentiation and depression
  - Gradual
  - Symmetric







# **Memristive HNN Learning**

- The firing neuron is predetermined by the label data
  - synaptic weights are updated by feature codes, allowing the predetermined neuron to fire.
- Proposed learning requires two operation phase
  - potentiation and depression.
- The spike signals applied to the top electrode (TE) and bottom electrode (BE) are determined according to label data and feature codes.

HRS = High Resistance Rate LRS = Low Resistance Rate









Figure 4. The proposed learning scheme. (a) An example of the feature code and label data to train memristive synapses of top1. (b) A schematic of the 4 pre-neurons and 2 post-neurons HNN according to operation phase.

#### **Memristive HNN Testing and Classification**

- In testing mode, applied feature codes to the memristive HNN are recognized by the decision logics based on the output signals of the post-neurons.
- Like the learning mode, the testing mode requires two operation phases, integrating and refractory.





Figure 5. Circuit Implementation. The circuit includes a switch array, switch control logic, 32x6 crosspoint memristive synapse array and six neuron circuits. Each neuron contains OPAMP based inverting integrator and comparator. Also, a schematic of HNN circuit according to operation phase are shown in this figure.

ligh or Low

#### **Memristive HNN Testing and Classification**

- Post neuron: <u>leaky integrate-and-</u> <u>fire neuron</u>, including a <u>comparator</u> and <u>inverting leaky integrator</u>
- As soon as the integrator output drops below a neuron's threshold voltage, the comparator output generates a high value and the neuron is assumed to have fired.
- After the integrating phase has completed, the refractory phase starts.
- In refractory phase, the charge on the integration capacitor needs to be fully discharged through the leaky path to prepare the neuron for the next feature code.



Figure 6. The recognition results of speech imagination. Measured output of each integrator during testing mode is shown. When feature code of /a/ is used as an input of memristive HNN, its results is shown in first column. In the cases of /u/ and /i/, its results are also shown in second and third column, respectively.

### Discussion

- The first electronic memristive HNN system for EEG pattern recognition
- Cross-point memristive synapse array using a 200 mm wafer scale
- Impressive classification results with speech imagery data for vowels
- Future direction
  - High density memristive HNN
  - Overcoming the scalability, connectivity, and synaptic density challenges





#### Part II.

#### Multiclass EEG Discrimination with Speech Imagination (Vowels and Words)

Biomed. Res. Int. (2016) & IEEE Trans. Biomed. Eng. (2018)

## **Vowel Imagination**

- Vowels: /a/, /e/, /i/, /o/, and /u/ (plus mute)
  - Silent speech BCI?
- Five healthy subjects (5 males; mean age:  $28.25 \pm 2.71$ , range: 26-32)
- 5 sessions with 10 trials for each syllable and mute
- Experimental design: e-Prime 2.0 software
- A HydroCel Geodesic Sensor Net with 64 channels
- Net Amps 300 amplifiers (Electrical Geodesics, Inc., Eugene, OR, USA)
  - 1000 Hz sampling rate; 1-100 Hz bandpass-filtered
  - ► IIR notch filter (Butterworth; order 4; bandwidth 59-61 Hz)

# **Vowel Imagination**

- Data preprocessing
  - ► 3s epoch
    - ▶ 30 time segments with a 0.2s length and 0.1s overlap
    - ► 6(conditions) × 50(trials) × 30(blocks) = 9000 samples
  - Features
    - Mean, variance, standard deviation, skewness
    - 4(features)×60(channels) = 240(dimension of feature vector)
  - 10-fold cross-validation
  - LASSO sparse regression model based feature selection



• Syllable cue: vowels /a/, /e/, /i/, /o/, /u/ and mute are randomly presented.

• Beep: beep sound for preparation of listening the sound or covert vowel articulation.



 $9000 \text{ samples} = 6 \text{ (conditions)} \times 50 \text{ (trials)} \times 30 \text{ (blocks)}$ 

# **Vowel Imagination**

- Classifiers
  - Extreme learning machine (ELM)
    - A type of feedforward neural network
    - High speed and good generalization performance compared to the classic gradient-based learning algorithms
      - Randomly assigned input weights
      - Analytically calculated output weights
    - ► ELM with linear kernel (ELM-L)
    - ► ELM with radial basis function (EML-R)
  - Support vector machine with radial basis function (SVM-R)
  - Linear discriminant analysis (LDA)



TABLE 1: Classification accuracies in % employing SVM-R, ELM, ELM-L, ELM-R, and LDA for subject 2. The highest classification accuracy among the four classifiers is marked in bold for pairwise combination. Classification accuracies are expressed as mean and associated standard deviation. SVM-R, ELM, ELM-L, ELM-R, and LDA denote the support vector machine with radial basis function, extreme learning machine, extreme learning machine with a linear kernel, extreme learning machine with a radial basis function, and linear discriminant analysis, respectively.

|            | /a/ versus  | /a/ versus | /a/ versus  | /a/ versus  | /e/ versus | /e/ versus  | /e/ versus | /i/ versus | /i/ versus | ol versus | /a/ versus | /e/ versus | /i/ versus | ol versus | /u/         |
|------------|-------------|------------|-------------|-------------|------------|-------------|------------|------------|------------|-----------|------------|------------|------------|-----------|-------------|
| Classifier | lel         | /i/        |             | /11/        | /i/        |             | /11/       |            | /11/       | /11/      | /mute/     | /mute/     | /mute/     | /mute/    | versus      |
|            | 101         | /1/        | /0/         | / u/        | /1/        | /0/         | / u/       | /0/        | / u/       | / u/      | /mute/     | /mute/     | /mute/     | /mute/    | /mute/      |
| SVM D      | 50.24 ±     | 55.32 ±    | 51.41 ±     | 50.22 ±     | 50.31 ±    | 49.18 ±     | 52.41 ±    | 52.47 ±    | 51.11 ±    | 51.02 ±   | 49.48 ±    | 50.35 ±    | 51.22 ±    | 50.14 ±   | 51.23 ±     |
| 5 V IVI-IX | 1.01        | 2.15       | 0.51        | 0.60        | 0.19       | 0.23        | 1.57       | 0.71       | 0.22       | 1.32      | 0.70       | 0.22       | 1.22       | 1.60      | 0.23        |
| EIM        | $81.41 \pm$ | 94.23 ±    | $62.42 \pm$ | $73.34 \pm$ | 90.55 ±    | 69.76 ±     | 56.23 ±    | 96.32 ±    | 97.47 ±    | 66.81 ±   | 92.85 ±    | 82.31 ±    | 99.41 ±    | 88.16 ±   | $80.28 \pm$ |
| ELIVI      | 1.18        | 1.02       | 2.15        | 3.21        | 1.78       | 12.94       | 3.48       | 0.18       | 0.76       | 3.83      | 2.43       | 2.16       | 0.12       | 3.74      | 2.87        |
| ELM I      | $81.32 \pm$ | 98.15 ±    | 67.11 ±     | 82.22 ±     | 88.31 ±    | 78.25 ±     | 53.14 ±    | 98.16 ±    | 98.23 ±    | 68.36 ±   | 92.28 ±    | 80.49 ±    | 99.12 ±    | 93.14 ±   | 87.25 ±     |
| ELM-L      | 0.47        | 0.67       | 1.04        | 2.40        | 1.73       | 2.23        | 3.10       | 0.37       | 2.12       | 1.63      | 0.83       | 3.70       | 0.33       | 2.21      | 1.12        |
| ELM D      | $86.28 \pm$ | 99.02 ±    | 73.03 ±     | 83.14 ±     | 89.08 ±    | $78.27 \pm$ | 58.36 ±    | 98.15 ±    | 97.07 ±    | 73.38 ±   | 95.09 ±    | 89.28 ±    | 99.01 ±    | 93.25 ±   | 93.01 ±     |
| ELM-K      | 1.12        | 0.76       | 4.62        | 1.02        | 0.14       | 0.16        | 3.41       | 0.22       | 1.42       | 2.73      | 1.03       | 3.13       | 0.14       | 0.73      | 1.12        |
| LDA        | $79.25 \pm$ | 90.32 ±    | 60.57 ±     | $84.12 \pm$ | 88.23 ±    | $70.04 \pm$ | 56.38 ±    | 97.07 ±    | 96.28 ±    | 65.14 ±   | 91.26 ±    | 80.38 ±    | 98.07 ±    | 90.39 ±   | $82.25 \pm$ |
| LDA        | 1.62        | 2.61       | 2.13        | 1.14        | 1.67       | 1.43        | 1.41       | 0.39       | 1.62       | 1.73      | 1.43       | 4.70       | 1.32       | 1.62      | 1.27        |

TABLE 3: Confusion matrix for all pairwise combinations and subjects using ELM, ELM-L, ELM-R, SVM-R, and LDA.

|               |               |               |               |               | Classifier    | s             |               |               |               |               |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|               | EL            | М             | ELN           | 1-L           | ELN           | 1-R           | SVN           | 1-R           | LD            | A             |
|               | Condition     |
|               | positive      | negative      | positive      | negative      | positive      | negative      | positive      | negative      | positive      | positive      |
| Test positive | 2516          | 1234          | 2649          | 1101          | 2635          | 1115          | 3675          | 75            | 2556          | 1194          |
| Test negative | 1509          | 2241          | 1261          | 2489          | 1297          | 2453          | 3525          | 225           | 1398          | 2352          |
|               | Sensitivity = | Specificity = |
|               | 0.6251        | 0.6449        | 0.6775        | 0.6933        | 0.6701        | 0.6875        | 0.5104        | 0.7500        | 0.6464        | 0.6633        |



Figure 5

## Word Imagination

- Imagined words: 'go', 'back', 'left', 'right', and 'stop'
- Eight healthy Korean Participant (2 women and 6 men, mean age: 27.13 ±3.30; range 22-32)
- 100 EEG responses for each word during three separate sessions.
- Preprocessing
  - ▶ 1.5s epochs time-locked to the onset of each task (pre-stimulus: 0.5s)
  - Automatic artifact removal (±100µV), baseline correction with prestimulus interval



# Word Imagination

- Feature extraction
  - ICA-based artefact removal & time-series reconstruction
  - Four features
    - ► Covariance Based Features (CF)
    - Maximum Linear Cross-correlation (MaxCOR)
    - Phase-only time-series: Phase-only CF, Phase-only MaxCOR
- Channel selection
  - CS1: left inferior frontal lobe (Broca's Area)
  - CS2: left superior temporal lobe (Wernicke's Area)
  - ► CS3: CS1 + CS 2
  - CS4: whole brain

Classifier: ELM (comparison: SVM-L, SVM-RBF, K-NN, Random Forest)



Fig. 3. This figure depicts the overall framework of the study.



Time  $(0 \sim 0.5 \text{ sec})$ 



Time-Frequency Plot

Fig. 5. The time-frequency representation of the word imagination data using the Morlet mother wavelet transform. The frequency range from 0 to 31 Hz was used in the plot for 0.5 s from the onset of imagination stimulation. The trials in the red boxes show potentially similar responses.

| TABLE I                                                                                                   |
|-----------------------------------------------------------------------------------------------------------|
| MEAN ACCURACY, KAPPA SCORE, AND CORRESPONDING STANDARD DEVIATIONS FOR ALL FOUR FEATURE EXTRACTION METHODS |
| AND CHANNEL SELECTIONS                                                                                    |

\_

|            |                   |                   | Covar             | iance-Connectivity | Features (Mean      | $\pm SD)$         |                     |                     |  |  |
|------------|-------------------|-------------------|-------------------|--------------------|---------------------|-------------------|---------------------|---------------------|--|--|
| Subjects   | С                 | S1                | С                 | S2                 | С                   | S3                | С                   | S4                  |  |  |
|            | Accuracy          | Kappa             | Accuracy          | Kappa              | Accuracy            | Kappa             | Accuracy            | Kappa               |  |  |
| <b>S</b> 1 | $0.352\pm0.040$   | $0.190 \pm 0.050$ | $0.335\pm0.029$   | $0.169 \pm 0.038$  | $0.332\pm0.042$     | $0.165 \pm 0.052$ | $0.358 \pm 0.034$   | $0.198 \pm 0.043$   |  |  |
| S2         | $0.307\pm0.044$   | $0.132 \pm 0.057$ | $0.335\pm0.047$   | $0.168 \pm 0.057$  | $0.336 \pm 0.043$   | $0.168 \pm 0.054$ | $0.361 \pm 0.049$   | $0.201\pm0.060$     |  |  |
| S3         | $0.358 \pm 0.041$ | $0.199 \pm 0.050$ | $0.352\pm0.059$   | $0.190 \pm 0.073$  | $0.361 \pm 0.046$   | $0.202\pm0.056$   | $0.371 \pm 0.030$   | $0.215\pm0.037$     |  |  |
| S4         | $0.326 \pm 0.039$ | $0.157 \pm 0.049$ | $0.332\pm0.046$   | $0.164 \pm 0.057$  | $0.322\pm0.038$     | $0.152\pm0.047$   | <b>0.403</b> ±0.036 | <b>0.256</b> ±0.045 |  |  |
| S5         | $0.358 \pm 0.063$ | $0.198 \pm 0.076$ | $0.371\pm0.030$   | $0.215\pm0.037$    | $0.368 \pm 0.055$   | $0.209 \pm 0.068$ | $0.394 \pm 0.045$   | $0.241\pm0.057$     |  |  |
| S6         | $0.335\pm0.062$   | $0.170\pm0.077$   | $0.355\pm0.026$   | $0.193 \pm 0.032$  | $0.342 \pm 0.051$   | $0.178 \pm 0.064$ | $0.345\pm0.066$     | $0.180 \pm 0.083$   |  |  |
| <b>S</b> 7 | $0.359 \pm 0.058$ | $0.200\pm0.071$   | $0.333 \pm 0.046$ | $0.167 \pm 0.058$  | $0.355 \pm 0.038$   | $0.194 \pm 0.049$ | $0.377\pm0.029$     | $0.221 \pm 0.038$   |  |  |
| <b>S</b> 8 | $0.349 \pm 0.052$ | $0.186 \pm 0.064$ | $0.355 \pm 0.026$ | $0.193 \pm 0.032$  | $0.354 \pm 0.044$   | $0.193 \pm 0.054$ | $0.364 \pm 0.040$   | $0.206 \pm 0.048$   |  |  |
| Average    | 0.3034            | 0.179             | 0.310             | 0.182              | 0.307               | 0.183             | 0.329               | 0.215               |  |  |
|            |                   |                   | Phase-only        | Covariance-Connec  | ctivity Features (M | $ean \pm SD$ )    |                     |                     |  |  |
| Subjects   | С                 | S1                | С                 | S2                 | С                   | S3                | С                   | CS4                 |  |  |
|            | Accuracy          | Kappa             | Accuracy          | Kappa              | Accuracy            | Kappa             | Accuracy            | Kappa               |  |  |
| S1         | $0.351 \pm 0.041$ | $0.188 \pm 0.048$ | $0.348 \pm 0.054$ | $0.184 \pm 0.067$  | $0.371 \pm 0.046$   | $0.213 \pm 0.056$ | $0.383 \pm 0.046$   | $0.230 \pm 0.057$   |  |  |
| S2         | $0.349 \pm 0.031$ | $0.185 \pm 0.038$ | $0.345\pm0.041$   | $0.182 \pm 0.051$  | $0.348 \pm 0.056$   | $0.184 \pm 0.070$ | $0.373 \pm 0.043$   | $0.217 \pm 0.054$   |  |  |
| <b>S</b> 3 | $0.332 \pm 0.025$ | $0.165 \pm 0.030$ | $0.352 \pm 0.051$ | $0.189 \pm 0.064$  | $0.325\pm0.043$     | $0.157 \pm 0.054$ | $0.362 \pm 0.031$   | $0.202\pm0.039$     |  |  |
| S4         | $0.331 \pm 0.037$ | $0.164 \pm 0.046$ | $0.348 \pm 0.029$ | $0.185 \pm 0.037$  | $0.348 \pm 0.043$   | $0.187 \pm 0.054$ | $0.368 \pm 0.040$   | $0.211 \pm 0.050$   |  |  |
| S5         | $0.345\pm0.059$   | $0.181 \pm 0.074$ | $0.361 \pm 0.041$ | $0.201 \pm 0.051$  | $0.331\pm0.067$     | $0.164 \pm 0.084$ | $0.355\pm0.051$     | $0.193 \pm 0.063$   |  |  |
| S6         | $0.342\pm0.050$   | $0.176\pm0.062$   | $0.346 \pm 0.061$ | $0.182\pm0.076$    | $0.339 \pm 0.052$   | $0.174 \pm 0.063$ | $0.355 \pm 0.028$   | $0.194 \pm 0.033$   |  |  |
| <b>S</b> 7 | $0.358 \pm 0.040$ | $0.197 \pm 0.049$ | $0.358 \pm 0.049$ | $0.199 \pm 0.061$  | $0.364 \pm 0.040$   | $0.205 \pm 0.049$ | $0.355\pm0.036$     | $0.193 \pm 0.045$   |  |  |
| <b>S</b> 8 | $0.358 \pm 0.044$ | $0.198 \pm 0.054$ | $0.355 \pm 0.031$ | $0.194 \pm 0.039$  | $0.356 \pm 0.050$   | $0.195 \pm 0.061$ | $0.345\pm0.051$     | $0.181 \pm 0.065$   |  |  |
| Average    | 0.307             | 0.182             | 0.314             | 0.190              | 0.313               | 0.185             | 0.321               | 0.203               |  |  |

| TABLE I                                                                                                   |
|-----------------------------------------------------------------------------------------------------------|
| MEAN ACCURACY, KAPPA SCORE, AND CORRESPONDING STANDARD DEVIATIONS FOR ALL FOUR FEATURE EXTRACTION METHODS |
| AND CHANNEL SELECTIONS                                                                                    |

|                                                   |                                                         |                                                                                                                                                                                        |                                                                                                                                                                                        | Covariance-Conne                                                                                                                                                                                       | ctivity Features (M                                                                                                                                                                                             | $lean \pm SD$ )                                                                                                                                                                                                 |                                                                                                                                                                                                                          |                                                                                                                                                                                     |                                                                                                                                                                                        |
|---------------------------------------------------|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subjects                                          |                                                         |                                                                                                                                                                                        |                                                                                                                                                                                        | MaxO                                                                                                                                                                                                   | COR-Connectivity l                                                                                                                                                                                              | Features ( $Mean \pm$                                                                                                                                                                                           | (SD)                                                                                                                                                                                                                     |                                                                                                                                                                                     |                                                                                                                                                                                        |
|                                                   | Subjects                                                | С                                                                                                                                                                                      | S1                                                                                                                                                                                     | С                                                                                                                                                                                                      | S2                                                                                                                                                                                                              | С                                                                                                                                                                                                               | \$3                                                                                                                                                                                                                      | C                                                                                                                                                                                   | S4                                                                                                                                                                                     |
| S1                                                |                                                         | Accuracy                                                                                                                                                                               | Kappa                                                                                                                                                                                  | Accuracy                                                                                                                                                                                               | Kappa                                                                                                                                                                                                           | Accuracy                                                                                                                                                                                                        | Kappa                                                                                                                                                                                                                    | Accuracy                                                                                                                                                                            | Kappa                                                                                                                                                                                  |
| S2<br>S3<br>S4<br>S5<br>S6<br>S7<br>S8<br>Average | S1<br>S2<br>S3<br>S4<br>S5<br>S6<br>S7<br>S8<br>Average | $\begin{array}{c} 0.361 \pm 0.070 \\ 0.335 \pm 0.052 \\ 0.332 \pm 0.053 \\ 0.352 \pm 0.046 \\ 0.352 \pm 0.078 \\ 0.338 \pm 0.058 \\ 0.300 \pm 0.063 \\ 0.333 \pm 0.033 \\ \end{array}$ | $\begin{array}{c} 0.201 \pm 0.088 \\ 0.169 \pm 0.066 \\ 0.162 \pm 0.066 \\ 0.190 \pm 0.057 \\ 0.189 \pm 0.096 \\ 0.173 \pm 0.072 \\ 0.126 \pm 0.079 \\ 0.166 \pm 0.043 \\ \end{array}$ | $\begin{array}{c} 0.361 \pm 0.035 \\ 0.348 \pm 0.055 \\ 0.340 \pm 0.059 \\ 0.365 \pm 0.066 \\ 0.371 \pm 0.037 \\ 0.368 \pm 0.048 \\ 0.368 \pm 0.052 \\ 0.346 \pm 0.042 \\ \hline 0.323 \\ \end{array}$ | $\begin{array}{c} 0.201 \pm 0.044 \\ 0.186 \pm 0.069 \\ 0.174 \pm 0.074 \\ 0.205 \pm 0.083 \\ 0.212 \pm 0.047 \\ 0.209 \pm 0.060 \\ 0.211 \pm 0.064 \\ 0.182 \pm 0.053 \\ \hline 0.198 \\ \hline \end{tabular}$ | $\begin{array}{c} 0.358 \pm 0.031 \\ 0.349 \pm 0.068 \\ 0.326 \pm 0.052 \\ 0.322 \pm 0.052 \\ 0.370 \pm 0.042 \\ 0.316 \pm 0.039 \\ 0.364 \pm 0.034 \\ 0.306 \pm 0.064 \\ \hline 0.305 \\ \hline \end{tabular}$ | $\begin{array}{c} 0.198 \pm 0.039 \\ 0.185 \pm 0.085 \\ 0.156 \pm 0.066 \\ 0.152 \pm 0.063 \\ 0.213 \pm 0.052 \\ 0.145 \pm 0.049 \\ 0.205 \pm 0.042 \\ 0.133 \pm 0.081 \\ \hline 0.173 \\ \hline ean \pm SD \end{array}$ | $\begin{array}{c} 0.375 \pm 0.054 \\ 0.367 \pm 0.031 \\ 0.383 \pm 0.043 \\ 0.377 \pm 0.052 \\ 0.351 \pm 0.050 \\ 0.364 \pm 0.030 \\ 0.366 \pm 0.030 \\ 0.368 \pm 0.051 \end{array}$ | $\begin{array}{c} 0.219 \pm 0.068 \\ 0.208 \pm 0.037 \\ 0.229 \pm 0.053 \\ 0.221 \pm 0.066 \\ 0.189 \pm 0.062 \\ 0.205 \pm 0.039 \\ 0.168 \pm 0.038 \\ 0.209 \pm 0.064 \\ \end{array}$ |
|                                                   | Subjects                                                | С                                                                                                                                                                                      | S1                                                                                                                                                                                     | С                                                                                                                                                                                                      | S2                                                                                                                                                                                                              | C                                                                                                                                                                                                               | \$3                                                                                                                                                                                                                      | C                                                                                                                                                                                   | S4                                                                                                                                                                                     |
| S1                                                | _                                                       | Accuracy                                                                                                                                                                               | Kappa                                                                                                                                                                                  | Accuracy                                                                                                                                                                                               | Kappa                                                                                                                                                                                                           | Accuracy                                                                                                                                                                                                        | Kappa                                                                                                                                                                                                                    | Accuracy                                                                                                                                                                            | Kappa                                                                                                                                                                                  |
| 52<br>S3<br>S4<br>S5<br>S6<br>S7<br>S8<br>Average | S1<br>S2<br>S3<br>S4<br>S5<br>S6<br>- S7<br>S8          | $\begin{array}{c} 0.351\pm 0.072\\ 0.365\pm 0.049\\ 0.340\pm 0.059\\ 0.333\pm 0.046\\ 0.351\pm 0.043\\ 0.313\pm 0.029\\ 0.358\pm 0.049\\ 0.367\pm 0.041 \end{array}$                   | $\begin{array}{c} 0.189 \pm 0.090 \\ 0.206 \pm 0.062 \\ 0.174 \pm 0.074 \\ 0.164 \pm 0.057 \\ 0.189 \pm 0.054 \\ 0.142 \pm 0.035 \\ 0.198 \pm 0.062 \\ 0.209 \pm 0.052 \end{array}$    | $\begin{array}{c} 0.381 \pm 0.025 \\ 0.377 \pm 0.052 \\ 0.352 \pm 0.053 \\ 0.355 \pm 0.063 \\ 0.354 \pm 0.060 \\ 0.342 \pm 0.046 \\ 0.371 \pm 0.061 \\ 0.339 \pm 0.052 \end{array}$                    | $\begin{array}{c} 0.226 \pm 0.030 \\ 0.221 \pm 0.065 \\ 0.190 \pm 0.067 \\ 0.193 \pm 0.080 \\ 0.193 \pm 0.075 \\ 0.177 \pm 0.057 \\ 0.214 \pm 0.076 \\ 0.174 \pm 0.065 \end{array}$                             | $\begin{array}{c} 0.361\pm 0.038\\ 0.356\pm 0.058\\ 0.346\pm 0.057\\ 0.326\pm 0.054\\ 0.354\pm 0.073\\ 0.339\pm 0.051\\ 0.332\pm 0.056\\ 0.359\pm 0.059\end{array}$                                             | $\begin{array}{c} 0.201\pm 0.047\\ 0.194\pm 0.072\\ 0.181\pm 0.071\\ 0.158\pm 0.069\\ 0.192\pm 0.091\\ 0.173\pm 0.065\\ 0.165\pm 0.069\\ 0.197\pm 0.074 \end{array}$                                                     | $\begin{array}{c} 0.345 \pm 0.018 \\ 0.359 \pm 0.052 \\ 0.352 \pm 0.040 \\ 0.375 \pm 0.054 \\ 0.358 \pm 0.027 \\ 0.359 \pm 0.037 \\ 0.362 \pm 0.028 \\ 0.371 \pm 0.033 \end{array}$ | $\begin{array}{c} 0.181 \pm 0.023 \\ 0.199 \pm 0.064 \\ 0.190 \pm 0.050 \\ 0.218 \pm 0.068 \\ 0.197 \pm 0.034 \\ 0.198 \pm 0.045 \\ 0.201 \pm 0.034 \\ 0.213 \pm 0.040 \end{array}$    |
|                                                   | Average                                                 | 0.312                                                                                                                                                                                  | 0.184                                                                                                                                                                                  | 0.322                                                                                                                                                                                                  | 0.199                                                                                                                                                                                                           | 0.311                                                                                                                                                                                                           | 0.183                                                                                                                                                                                                                    | 0.321                                                                                                                                                                               | 0.200                                                                                                                                                                                  |

|            |       |       |       |         |       |       | Cov      | ariance-Con  | nectivity F | Peatures |        |         |       |       |       |         |
|------------|-------|-------|-------|---------|-------|-------|----------|--------------|-------------|----------|--------|---------|-------|-------|-------|---------|
| Subjects   |       |       | CS1   |         |       |       | CS2      |              |             |          | CS3    |         |       |       |       |         |
|            | SVM-L | RF    | K-NN  | SVM-RBF | SVM-L | RF    | K-NN     | SVM-RBF      | SVM-L       | RF       | K-NN   | SVM-RBF | SVM-L | RF    | K-NN  | SVM-RBF |
| S1         | 15.20 | 21.60 | 22.90 | 25.20   | 24.80 | 19.7  | 21.30    | 19.00        | 22.30       | 21.00    | 22.60  | 20.30   | 19.40 | 18.40 | 21.60 | 22.90   |
| S2         | 16.80 | 20.30 | 20.00 | 22.90   | 17.10 | 22.30 | 23.90    | 21.90        | 17.40       | 23.20    | 25.20  | 21.30   | 18.40 | 20.60 | 19.40 | 20.30   |
| S3         | 15.80 | 23.20 | 25.50 | 24.80   | 18.40 | 29.40 | 16.10    | 27.70        | 13.90       | 24.50    | 24.20  | 22.90   | 21.30 | 20.00 | 22.30 | 21.00   |
| S4         | 20.00 | 23.90 | 23.90 | 21.30   | 20.30 | 22.90 | 20.60    | 20.30        | 20.00       | 23.50    | 20.60  | 20.00   | 16.80 | 23.50 | 23.90 | 18.70   |
| S5         | 17.10 | 22.60 | 21.30 | 21.00   | 22.60 | 26.10 | 26.10    | 24.80        | 20.30       | 23.20    | 24.50  | 21.90   | 20.00 | 24.50 | 23.90 | 21.90   |
| <b>S</b> 6 | 20.60 | 24.80 | 21.30 | 22.30   | 21.60 | 20.60 | 23.90    | 23.50        | 19.40       | 21.60    | 19.70  | 18.40   | 17.70 | 23.90 | 21.00 | 17.70   |
| S7         | 20.30 | 19.70 | 19.40 | 19.40   | 17.70 | 19.40 | 23.20    | 22.30        | 17.40       | 21.60    | 20.00  | 19.40   | 16.50 | 24.20 | 24.20 | 22.30   |
| <b>S</b> 8 | 17.10 | 18.40 | 21.00 | 22.90   | 18.40 | 22.90 | 20.30    | 24.50        | 18.40       | 22.90    | 23.50  | 22.30   | 20.30 | 21.60 | 24.80 | 23.90   |
|            |       |       |       |         |       | P     | hase-onl | y Covariance | e-Connect   | ivity Fe | atures |         |       |       |       |         |
| Subjects   |       |       | CS1   |         |       |       | CS2      |              |             |          | CS3    |         |       |       | CS4   |         |
|            | SVM-L | RF    | K-NN  | SVM-RBF | SVM-L | RF    | K-NN     | SVM-RBF      | SVM-L       | RF       | K-NN   | SVM-RBF | SVM-L | RF    | K-NN  | SVM-RBF |
| <b>S</b> 1 | 20.30 | 21.00 | 21.00 | 23.20   | 22.60 | 22.60 | 21.30    | 23.20        | 18.70       | 21.30    | 20.60  | 20.30   | 21.90 | 25.50 | 20.60 | 25.20   |
| <b>S</b> 2 | 15.20 | 20.60 | 26.80 | 25.50   | 21.00 | 24.20 | 25.20    | 21.60        | 21.90       | 23.20    | 18.40  | 20.00   | 16.10 | 23.90 | 22.90 | 23.20   |
| <b>S</b> 3 | 21.30 | 21.30 | 23.20 | 21.60   | 20.30 | 21.30 | 22.60    | 21.90        | 21.90       | 21.90    | 21.60  | 21.90   | 19.00 | 23.90 | 22.30 | 21.60   |
| <b>S</b> 4 | 17.70 | 18.10 | 19.00 | 19.40   | 16.80 | 18.40 | 16.50    | 18.10        | 18.40       | 21.90    | 23.90  | 22.60   | 19.40 | 22.30 | 21.90 | 21.00   |
| S5         | 16.80 | 23.20 | 20.00 | 21.00   | 16.80 | 20.30 | 22.30    | 19.40        | 18.40       | 25.80    | 23.90  | 22.30   | 16.50 | 23.50 | 21.60 | 19.70   |
| <b>S</b> 6 | 19.70 | 24.20 | 25.20 | 25.80   | 18.40 | 19.70 | 18.70    | 19.40        | 22.90       | 24.80    | 18.10  | 19.70   | 17.70 | 23.90 | 20.00 | 21.00   |
| <b>S</b> 7 | 20.30 | 21.30 | 23.50 | 22.60   | 23.20 | 30.30 | 23.20    | 20.60        | 20.00       | 21.60    | 24.20  | 25.50   | 20.00 | 23.50 | 22.60 | 21.90   |
| <b>S</b> 8 | 15.50 | 22.30 | 24.80 | 23.50   | 25.20 | 24.80 | 21.90    | 21.90        | 21.90       | 22.30    | 22.60  | 23.20   | 18.70 | 22.90 | 22.60 | 23.20   |

TABLE II MEAN MULTICLASS ACCURACY FOR ALL FOUR FEATURE EXTRACTION METHODS AND CHANNEL SELECTIONS USING FOUR POPULAR CLASSIFIERS

|            |              |       |       |       |         |       | Covori | anco Co | nonoctivity E | ofuroc     |          |       |         |       |       |       | =       |
|------------|--------------|-------|-------|-------|---------|-------|--------|---------|---------------|------------|----------|-------|---------|-------|-------|-------|---------|
| Subjects   |              |       |       |       |         |       | Covari | Ma      | xCOR-Conn     | ectivity F | eatures  |       |         |       |       |       |         |
| Subjects   | Subjects     |       |       | CS1   |         |       | CS2    |         |               |            |          | CS3   |         | CS4   |       |       |         |
| <u>\$1</u> | -            | SVM-L | RF    | K-NN  | SVM-RBF | SVM-L | RF     | K-NN    | SVM-RBF       | SVM-L      | RF       | K-NN  | SVM-RBF | SVM-L | RF    | K-NN  | SVM-RBF |
| S2         | <b>S</b> 1   | 18 40 | 21.90 | 21.90 | 22.90   | 19.00 | 21.30  | 21.00   | 22.90         | 20.30      | 21.60    | 25.80 | 22.30   | 18 70 | 23 50 | 20.60 | 21.60   |
| S3         | S2           | 24 50 | 22.90 | 21.00 | 24.80   | 18 40 | 23 50  | 21.00   | 20.60         | 21.30      | 23.20    | 18 40 | 21.60   | 20.60 | 23.50 | 20.00 | 20.30   |
| S4         | S3           | 18.10 | 21.00 | 22.30 | 21.00   | 20.60 | 22.60  | 21.00   | 21.60         | 18.10      | 21.90    | 20.60 | 22.30   | 20.30 | 22.60 | 21.60 | 20.30   |
| S5         | S4           | 17.70 | 22.60 | 22.60 | 21.90   | 16.80 | 18.40  | 16.50   | 18.10         | 18.40      | 21.90    | 23.90 | 22.60   | 19.40 | 22.30 | 21.90 | 21.00   |
| S6         | S5           | 20.00 | 21.90 | 20.00 | 20.00   | 18.10 | 22.90  | 19.70   | 20.00         | 15.80      | 20.60    | 22.90 | 18.70   | 18.70 | 20.30 | 21.00 | 21.30   |
| S7         | <b>S</b> 6   | 25.20 | 25.50 | 24.20 | 20.30   | 13.90 | 20.60  | 19.00   | 19.00         | 16.50      | 21.00    | 21.90 | 18.10   | 21.60 | 21.90 | 22.90 | 23.50   |
| <b>S</b> 8 | <b>S</b> 7   | 21.60 | 20.60 | 21.30 | 21.00   | 16.80 | 25.80  | 22.60   | 21.00         | 19.40      | 22.60    | 22.30 | 21.90   | 18.70 | 22.30 | 23.90 | 21.60   |
|            | - <b>S</b> 8 | 17.10 | 21.60 | 21.60 | 21.60   | 17.10 | 21.60  | 21.00   | 21.90         | 17.10      | 23.90    | 22.90 | 20.60   | 18.40 | 23.90 | 23.50 | 21.30   |
|            |              |       |       |       |         |       | F      | hase-or | ly MaxCOR     | -Connecti  | vity Fea | tures |         |       |       |       |         |
| Subjects   | Subjects     |       |       | CS1   |         |       |        | CS2     |               |            |          | CS3   |         |       |       | CS4   |         |
| <u>S1</u>  | -            | SVM-L | RF    | K-NN  | SVM-RBF | SVM-L | RF     | K-NN    | SVM-RBF       | SVM-L      | RF       | K-NN  | SVM-RBF | SVM-L | RF    | K-NN  | SVM-RBF |
| S2         | <b>S</b> 1   | 21.30 | 21.00 | 22.60 | 19.70   | 20.00 | 24.20  | 21.90   | 22.30         | 15.50      | 20.00    | 22.60 | 18.10   | 21.60 | 23.90 | 24.80 | 22.60   |
| S3         | S2           | 18.40 | 24.20 | 27.10 | 27.70   | 20.60 | 28.10  | 26.10   | 23.90         | 20.30      | 23.20    | 20.60 | 22.90   | 21.30 | 20.00 | 22.30 | 21.00   |
| S4         | <b>S</b> 3   | 22.30 | 26.50 | 19.70 | 22.60   | 19.40 | 26.50  | 18.10   | 19.70         | 17.40      | 19.40    | 19.00 | 17.70   | 14.80 | 20.30 | 23.90 | 20.60   |
| S5         | S4           | 19.70 | 17.40 | 21.30 | 17.70   | 15.80 | 21.60  | 19.70   | 21.60         | 20.00      | 23.20    | 20.00 | 22.60   | 15.80 | 21.90 | 20.00 | 21.00   |
| <b>S</b> 6 | <b>S</b> 5   | 22.30 | 22.90 | 22.30 | 22.90   | 15.20 | 22.30  | 21.60   | 22.30         | 19.00      | 25.50    | 22.60 | 21.90   | 19.40 | 21.90 | 24.20 | 23.20   |
| <b>S</b> 7 | <b>S</b> 6   | 22.90 | 22.60 | 21.60 | 20.60   | 15.50 | 25.20  | 25.20   | 21.00         | 19.00      | 21.30    | 19.00 | 19.00   | 19.00 | 21.90 | 17.40 | 19.70   |
| <b>S</b> 8 | <b>S</b> 7   | 14.80 | 23.20 | 22.90 | 22.90   | 16.50 | 22.60  | 19.70   | 18.70         | 18.10      | 21.30    | 25.20 | 21.30   | 22.60 | 27.40 | 27.70 | 26.50   |
|            | - <u>S8</u>  | 21.90 | 22.60 | 18.40 | 22.30   | 17.70 | 23.90  | 23.50   | 24.20         | 24.80      | 23.50    | 22.90 | 23.50   | 20.30 | 24.20 | 22.30 | 23.50   |

TABLE II MEAN MULTICLASS ACCURACY FOR ALL FOUR FEATURE EXTRACTION METHODS AND CHANNEL SELECTIONS USING FOUR POPULAR CLASSIFIERS

Abbreviation: CS = Channel Selection; SVM = support vector machine; L = linear; RF = random forest; K-NN = K-nearest neighbours; RBF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; L = linear; RF = radial basis function the support vector machine; RF = radial basis function the support vector mach

\_

|            | Covar             | iance-Connectivity | Features (Mean        | $\pm SD)$         | Phase-only        | Covariance-Connec | ctivity Features (M    | $ean \pm SD$ )    |
|------------|-------------------|--------------------|-----------------------|-------------------|-------------------|-------------------|------------------------|-------------------|
| Subjects   | CS1               | CS2                | CS3                   | CS4               | CS1               | CS2               | CS3                    | CS4               |
| <b>S</b> 1 | $0.831 \pm 0.060$ | $0.814 \pm 0.079$  | $0.791 \pm 0.065$     | $0.838 \pm 0.054$ | $0.856 \pm 0.080$ | $0.831 \pm 0.055$ | $0.823 \pm 0.049$      | $0.856 \pm 0.079$ |
| <b>S</b> 2 | $0.823 \pm 0.072$ | $0.806 \pm 0.071$  | $0.791 \pm 0.011$     | $0.855 \pm 0.049$ | $0.824 \pm 0.080$ | $0.821 \pm 0.066$ | $0.832 \pm 0.067$      | $0.839 \pm 0.035$ |
| S3         | $0.831 \pm 0.086$ | $0.800 \pm 0.072$  | $0.790 \pm 0.059$     | $0.839 \pm 0.075$ | $0.845 \pm 0.074$ | $0.856 \pm 0.071$ | $0.822\pm0.077$        | $0.840 \pm 0.061$ |
| S4         | $0.824 \pm 0.044$ | $0.807 \pm 0.039$  | $0.790 \pm 0.069$     | $0.857 \pm 0.076$ | $0.821 \pm 0.103$ | $0.832 \pm 0.076$ | $0.831 \pm 0.057$      | $0.848\pm0.097$   |
| S5         | $0.829 \pm 0.092$ | $0.807 \pm 0.075$  | $0.791 \pm 0.063$     | $0.841 \pm 0.086$ | $0.863 \pm 0.052$ | $0.807 \pm 0.037$ | $0.832 \pm 0.086$      | $0.831 \pm 0.079$ |
| <b>S</b> 6 | $0.813 \pm 0.082$ | $0.806 \pm 0.041$  | $0.789 \pm 0.070$     | $0.879 \pm 0.079$ | $0.815 \pm 0.054$ | $0.839 \pm 0.064$ | $0.809 \pm 0.073$      | $0.840 \pm 0.093$ |
| <b>S</b> 7 | $0.816 \pm 0.057$ | $0.814 \pm 0.087$  | $0.798 \pm 0.059$     | $0.839 \pm 0.070$ | $0.840\pm0.079$   | $0.838 \pm 0.064$ | $0.833 \pm 0.089$      | $0.838 \pm 0.056$ |
| S8         | $0.814 \pm 0.056$ | $0.798 \pm 0.041$  | $0.790 \pm 0.057$     | $0.840 \pm 0.063$ | $0.816\pm0.070$   | $0.847 \pm 0.059$ | $0.824 \pm 0.081$      | $0.831 \pm 0.068$ |
| Average    | 0.823             | 0.807              | 0.791                 | 0.848             | 0.835             | 0.834             | 0.826                  | 0.840             |
|            | MaxO              | COR-Connectivity   | Features ( $Mean \pm$ | (SD)              | Phase-only        | MaxCOR-Connect    | tivity Features ( $Me$ | $ean \pm SD$ )    |
| Subjects   | CS1               | CS2                | CS3                   | CS4               | CS1               | CS2               | CS3                    | CS4               |
| S1         | $0.831 \pm 0.077$ | $0.824 \pm 0.057$  | $0.809 \pm 0.105$     | $0.840 \pm 0.073$ | $0.830 \pm 0.073$ | $0.831 \pm 0.069$ | $0.831 \pm 0.077$      | $0.840 \pm 0.049$ |
| S2         | $0.799 \pm 0.056$ | $0.840 \pm 0.106$  | $0.855 \pm 0.073$     | $0.847 \pm 0.081$ | $0.830 \pm 0.079$ | $0.822 \pm 0.064$ | $0.832 \pm 0.039$      | $0.855\pm0.063$   |
| S3         | $0.785 \pm 0.127$ | $0.848 \pm 0.069$  | $0.822 \pm 0.075$     | $0.833 \pm 0.091$ | $0.816 \pm 0.063$ | $0.824 \pm 0.066$ | $0.822\pm0.076$        | $0.833 \pm 0.084$ |
| S4         | $0.806 \pm 0.077$ | $0.824 \pm 0.095$  | $0.790 \pm 0.059$     | $0.840 \pm 0.079$ | $0.832 \pm 0.087$ | $0.838 \pm 0.099$ | $0.806 \pm 0.086$      | $0.864 \pm 0.064$ |
| S5         | $0.824 \pm 0.078$ | $0.855 \pm 0.093$  | $0.815 \pm 0.065$     | $0.822 \pm 0.065$ | $0.837 \pm 0.088$ | $0.831 \pm 0.058$ | $0.814 \pm 0.096$      | $0.847 \pm 0.057$ |
| S6         | $0.808 \pm 0.104$ | $0.814 \pm 0.090$  | $0.824 \pm 0.070$     | $0.840\pm0.062$   | $0.824 \pm 0.071$ | $0.816 \pm 0.072$ | $0.815 \pm 0.064$      | $0.863 \pm 0.085$ |
| S7         | $0.816 \pm 0.057$ | $0.830 \pm 0.061$  | $0.840\pm0.070$       | $0.871 \pm 0.078$ | $0.832 \pm 0.086$ | $0.839 \pm 0.064$ | $0.838 \pm 0.086$      | $0.847\pm0.047$   |
| <b>S</b> 8 | $0.797 \pm 0.114$ | $0.831 \pm 0.043$  | $0.799 \pm 0.065$     | $0.856 \pm 0.062$ | $0.846 \pm 0.060$ | $0.840 \pm 0.090$ | $0.823 \pm 0.061$      | $0.832 \pm 0.087$ |
| Average    | 0.808             | 0.833              | 0.819                 | 0.844             | 0.831             | 0.830             | 0.823                  | 0.848             |

#### TABLE III MEAN ACCURACY AND CORRESPONDING STANDARD DEVIATIONS FOR ALL THE FOUR FEATURE EXTRACTION METHODS AND CHANNEL SELECTIONS

Abbreviation: CS = Channel Selection

| Feature Type | CS1 vs. CS2        | CS1 vs. CS3     | CS1 vs. CS4       | CS2 vs. CS3      | CS3 vs. CS4 |
|--------------|--------------------|-----------------|-------------------|------------------|-------------|
| CF           | 0.0328             | 0.2662          | 0.0074            | 0.4754           | 0.0104      |
| Po-CF        | 0.0725             | 0.3212          | 0.0181            | 0.2750           | 0.0232      |
| MaxCOR       | 0.0140             | 0.4650          | 0.0008            | 0.0197           | 0.0364      |
| Po-MaxCOR    | 0.0593             | 0.4563          | 0.0571            | 0.0532           | 0.0466      |
| Estima       | ates of p-value fr | om Binary Class | ification Results | using the Paired | t-Test      |
| Feature Type | CS1 vs. CS2        | CS1 vs. CS3     | CS1 vs. CS4       | CS2 vs. CS3      | CS3 vs. CS4 |
| CF           | 0.0006             | 0.0001          | 0.0033            | 0.0001           | 0.0001      |
| Po-CF        | 0.4566             | 0.0921          | 0.2291            | 0.1478           | 0.0063      |
| MaxCOR       | 0.3857             | 0.0683          | 0.0111            | 0.0788           | 0.0042      |
| D- M-COD     | 0.0073             | 0 1455          | 0.0013            | 0.0608           | 0.0084      |

TABLE IV ESTIMATES OF THE P-VALUE WITH PAIRED T-TEST FOR MULTICLASS AND BINARY ACCURACIES WITH FOUR CHANNEL SELECTIONS

Abbreviation: CS = Channel Selection

\_



#### **Future Study Direction**

## **Future Research Direction**

- Clinical Application
  - Neurorehabilitation for aphasia patients combined with brain stimulation (tDCS, TMS)
  - Language training for language disorder patients
- Brain Computer Interface
  - Silent speech BCI
  - Combination with other paradigm (e.g., motor imagery, P300 speller)
- Collaborate with Language Processing Research
- Collaborate with Neuromorphic & Deep Neural Network Research

#### Part IV.

#### My Lab (BMSSA) & Other Researches



#### **Other Research Fields**





#### Homepage: <u>https://bmssa.gist.ac.kr/</u>

Current













PhD students

MS students

Alumni



Visiting Scholar



PhD



# Thank you !