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Social networks

The ability to collect and analyze such social network data provides unique opportunities to
understand the underlying principles of social networks, their formation, evolution and
characteristics.

- Algorithms: Design of novel algorithms, algorithms for analyzing social networks, as well to
improve the performance of information sharing in social networks.

- Systems: Development of new systems to harvest, collect and analyze data from online social
networks, as well building novel social networking applications.

- User Behavior: Understanding the user behavior in social networks, in particular understanding
incentives for users to form and participate in social networks, as well as understand the
importance of communities, influence and reputation in social networks.
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Opinion dynamics in social networks

Knowing more people gives one greater access, enhances the sharing of
information, and makes it easier to influence others for the simple reason that
influencing people you know is easier than influencing strangers.

it

https://www.livetradingnews.com/share-network-powerful-becomes-7578.html#WwumAQiFO70



Part-1: Modeling
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* Change S_g from 0.7 to 0.51 and
H_g from 0.3 to 0.49
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Modeling for the update of Hyosung’s opinions
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Multiple Interdependent Topics

Modeling for the update of Hyosung’s opinions

Positive effect (coupling) vs. negative coupling
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Modeling for the update of Hyosung’s opinions

may be complicated!
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Deterministic model — Static case!
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Deterministic model — Static case!

What happens? = Interdependent

p— " p—
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way (ex. change
minimum number of
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For example, change your mind for the game for
a complete consensus.. **
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Part-2: Analysis

Problem 1-Fixed Matrices
(Typical consensus-based ideas- Linearized/ Nominal

or, positive & negative mixed)



Model 1- static case
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Model 1- static case

() = — (xj(t) (1)),
.

x = —Lx.
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T
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Def.. Clusters & cluster consensus (clustered opinions)

xi(t) = — x;(t) — xi(t)),



Model 1- static case

JEN;
X
T
' Aij A:; =0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.




Model 1- static case
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satisfying two properties: (1) C; [ C; = I, for i # j, and (ii) s >
Ui.:l Cr. = V(G). We have the following definition. > >
>

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy, ..., such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.




Model 1- static case

JEN;
4
T
' A;=AL >0
x = —Lx. OO
Def.. Clusters & cluster consensus (clustered opinions) %5

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.




Model 1- static case

%(t) = — (xj (1) — xi(1),

JEN;
R
T
' A;=AL >0
x = —Lx. O
_ o/
Def.. Clusters & cluster consensus (clustered opinions) \Q?
A partition of V(G) is given by Cq,....C; (1 <1 < n) Q

satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui-=1 Ci. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.




Model 1- static case

%(t) = — (xj (1) — xi(1),

jE.-I"'h'r{
)
' T
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian



Model 1- static case

%(t) = — (xj (1) — xi(1),

jE.-I"'h'r{
)
' A;=AL>0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Iy.q},{v = [vi,...,vi]T ¢
R (v; — v;) € M(Ay),¥(1,)) € £}}




Model 1- static case

JEN;
<
T
‘ A= A‘u >0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a

cluster consensus if there exists a partition Cy,...,(, such

that all agents belonging to the same paﬂltlnn achleve con- A sole null space of
sensus, while for any two agents ¢ and j belonging to two

different partitions, x; # x;. Each C;, i = 1,....[, is re- scalar consensus

ferred to as a cluster.

Property: Null space of Laplacian




Model 1- static case

JEN;
<
T
‘ A= A‘u >0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a

cluster consensus if there exists a partition Cy,...,(, such

that all agents belonging to the same paﬂltlnn achleve con- A sole null space of
sensus, while for any two agents ¢ and j belonging to two

different partitions, x; # x;. Each C;, i = 1,....[, is re- scalar consensus

ferred to as a cluster.

Property: Null space of Laplacian

- Additional null space !




Model 1- static case

x;(t) = — (Xj(t) — x;(t)), Def.: Positive (semi-) connected

jE.-I"'h'r{
)
' A;=AL>0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Iy.q},{v = [vi,...,vi]T ¢
R (v; — v;) € M(Ay),¥(1,)) € £}}




Model 1- static case

) = — YT Mg ()~ xi(0),

JEN;
X T
' A= Aij =0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢
HanVj — Vi} = g‘n\a'r{Aij),'?’(i.j} < 8}}

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.




Model 1- static case

x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢
HanVj — Vi} = g‘n\a'r{Aij),"ﬁ"(i.j} < 8}}

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.

Thm.: Exact condition for a consensus

The consensus system globally exponentially converges to
x* =1, ®x if and only if V(L) = span{1,, @ Laxa}.




Model 1- static case

x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = HI)M'l{mnge{l,, @ Igxat. {v = Vi
] T SFERALE

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.

Thm.: Exact condition for a consensus

The consensus system globally exponentially converges to
x* =1, ®x if and only if V(L) = span{1,, @ Laxa}.

r null space!



Model 1- static case

x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

ferred to as a cluster.

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1,..., [, is re-

Property: Null space of Laplacian

R |(vi — vi) € N(Ay),Y(1,]) € }}

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.

Thm.: Exact condition for a consensus

The consensus system globally exponentially converges to
x* =1, ®x if and only if V(L) = span{1,, @ Laxa}.

_ If there exists a positive spanning tree in G, then consensus
is globally exponentially achieved.



Model 1- static case

x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢
HanVj — Vi} = g‘n\a'r{Aij),'?’(i.j} < 8}}

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

y exponentially converges to
[(L) = span{1ln ® Laxa}.

If there exists a positive spanning tree in G, then consensus
is globally exponentially achieved.




Model 1- static case

xi(t) = — (Xj(t) — x;(t)), Def.: Positive (semi-) connected

_’,T"E.-""u'q' ===== sgmi-positive or positive connection
2 positive connection
_—
- [Ai 4520 T
L)
x = —Lx. =

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by Cy,....C; (L <1 <mn) | | N
satisfying two properties: (i) C;(C; =0, fori # j,and Gty | | Y N =
U%_, Ci = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a T is a positive spanni

cluster consensus if there exists a partition Cy,...,(, such .

that all agents belonging to the same partition achieve con- Thm.: Exact condition f

sensus, while for any two agents ¢ and j belonging to two

different partitions, x; # x;. Each C;, i = 1,....1, is re- The consensus system globglly exponentially converges to

ferred to as a cluster. x* =1, ®x if and only iff\/ (L) = span{l, @ Laxa}.

: I If there exists a positive spanning tree in G, then consensus

Property Nufl >pace B LaplaCIan — is globally exponentially achieved.

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢

R |(vi — vi) € N(Ay),Y(1,]) € }}




Model 1- static case

x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

ferred to as a cluster.

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1,..., [, is re-

Property: Null space of Laplacian

R |(vi — vi) € N(Ay),Y(1,]) € }}

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.

Thm.: Exact condition for a consensus

The consensus system globally exponentially converges to
x* =1, ®x if and only if V(L) = span{1,, @ Laxa}.

_ If there exists a positive spanning tree in G, then consensus
is globally exponentially achieved.

—

Suppose there exists a positive tree T C G of [ vertices.
Under the consensus protocol, x;(t) — x;(t), Vi,j € T, as
t — oo




Model 1-

static case

) = — 3T Aot~ xi(0)
jEN:
<
‘ Ajj = A;‘; >0
x = —Lx.

Def.. Clusters & cluster consensus (clustered opinions)

A partition of V(G) is given by C1,....C (1 <1 < n)
satisfying two properties: (1) C; [ C; = I, for i # j, and (ii)
Ui.:l Cr. = V(G). We have the following definition.

The n-agent system under the consensus protocol achieves a
cluster consensus if there exists a partition Cy,...,(, such
that all agents belonging to the same partition achieve con-
sensus, while for any two agents ¢ and j belonging to two
different partitions, x; # x;. Each C;, i = 1....,1, is re-
ferred to as a cluster.

Property: Null space of Laplacian

N(L) = span{range{1, @ Ly.q},{v = [v],....v]]T ¢
HanVj — Vi} = g‘n\a'r{Aij),"ﬁ"(i.j} < 8}}

—

Def.: Positive (semi-) connected

===== sgmi-positive or positive connection
positive connection
— ""\,\

T

-
-
-

— -

T is a positive spanning tree of G. The edges in £(7 ) are in red color.

Thm.: Exact condition for a consensus

The consensus system globally exponentially converges to
x* =1, ®x if and only if V(L) = span{1,, @ Laxa}.

If there exists a positive spanning tree in G, then consensus

is globall tially achieved.
is globally exponentially achiev Clusters!

Suppose there exists a positive tree T C G of [ vertices:
Under the consensus protocol, x;(t) — x;(t), Vi,j € T, as
t — oo

—




Model 1-

static case

Algorithm 1 Finding all clusters of & under the matrix-

weighted consensus protocol (8).

Require: G = (V, &, A)
l: =1

2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p};
4: repeat
50 Cgl(i+1) =Cg(i);
6:  check < false;
7. forall C,, € Cg(i) do
8: for all C; € Cg(i),l # m do
9: if J4i € C; satisfies Proposition 1(ii) then
10: Vie mp = V(Tm ] U VIiT;-?]‘
L1 Eremp = E(Tm) UE(T) US:
12: {—'tr mp C'.-n U CI
13: Co(i+1) =Cg(i+ 1)\ {Cn, C} U{Ctemp
14: check < true;
15: break;
16: end if
17: end for
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)

EX-1:




Model 1-

static case

Algorithm 1 Finding all clusters of & under the matrix-

weighted consensus protocol (8).

Require: G = (V, &, A)
l: =1

2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p};
4: repeat
50 Cgl(i+1) =Cg(i);
6:  check < false;
7. forall C,, € Cg(i) do
8: for all C; € Cg(i),l # m do
9: if J4i € C; satisfies Proposition 1(ii) then
10: Vie mp = V(Tm ] U VIiT;-?]‘
L1 Eremp = E(Tm) UE(T) US:
12: {—'tr mp an U CI
13: Co(i+1) =Cg(i+ 1)\ {Cn, C} U{Ctemp
14: check < true;
15: break;
16: end if
17: end for
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)

EX-1:

Positive semidefinite




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).

Require: G = (V.£. A)
1: 1 = ()

2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)},m=1,...,p}
4: repeat
50 Cgli+1)=Cgli);
6:  check + false;
7. forall C,, € Cg(i) do
8: for all C; € Cg(i),l # m do
9: if J4i € C; satisfies Proposition 1(ii) then
10: Viemp = V(Tn) UV(Ti); Positive semidefinite
11: Strrmp = S{T;r-n) . E{Tt-} US;
12: Ctr:mp = Cp U
13: Cgli+ 1) =Cgli+ 1)\ {Crn, Ci} U {Cremp}:
14: check < true;
15: break:
16: end if
17: end for
18: if check == true then
19: break:
20: end if
21:  end for

22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).

Require: G = (V.£. A)
1: 1 = ()

2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)},m=1,...,p}
4: repeat
50 Cgli+1)=Cgli);
6:  check + false;
7. forall C,, € Cg(i) do
8: for all C; € Cg(i),l # m do
9: if J4i € C; satisfies Proposition 1(ii) then
10: Viemp = V(Tn) UV(Ti); Positive semidefinite
11: Strrmp = S{T;r-n) . E{Tt-} US;
12: Ctr:mp = Cp U
13: Cgli+ 1) =Cgli+ 1)\ {Crn, Ci} U {Cremp}:
14: check < true;
15: break:
16: end if
17: end for
18: if check == true then
19: break:
20: end if
21:  end for

22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).

Require: G = (V.£. A)

l:

O:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20
21:
22:

i =)
Find the set of positive trees {7,...,7,} in G;
Cg(0) = {'f:m = {V{fﬂn}}« m=1,... :F}:

repeat

Cg(i+1) =Cgl(i);
check <« false;
for all C,,, € Cg(i) do
for all C; € Cg(i),l # m do
if J4i € C; satisfies Proposition 1(ii) then
vﬁ?mp = v{f:r:r-n] U v(ﬁ].
Strrmp = S{T;r-n] U E{TE-} UsS;
Ctr:mp = Cp U
EQ{": +1)=Cg (i+ 1)\ {Cms‘gi} U {{"tmnp}:
check ¢+ true;
break;
end if
end for
if check == true then
break;
end if
end for
until Cg{ij =Cgli —1)

‘ Path 1 + path 2 = positive path



Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).
Require: G = (V.£. A)
1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3 CQ{”) = {cm = {V{fﬂn}}a m = ]"‘.' “e :I—’}: 2 (2,3) 3
4: repeat
50 Cgli+1)=Cgli);
i R EX-20 = pmmigneinen || BX3 — semtpoue copecto
- m ghe T - =
8: for all C; € Cg(i),l # m do 0 — ~\ / T“*x
9: if J4i € C; satisfies Proposition 1(ii) then / ffa]r— ~ N A | N\
10: Viemp = V(Tm) UV(T1); !\ | \
L1 Strrmp = S{T;r-n) U E{TE-} US: | / |
12: Ctr:mp =Cm UCH \ —_ /
14: check ¢« true; g \IH /,:?}
15: break: -
16: end if
17: end for
18: if check == true then
19: break;
20: end if
21:  end for

22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).
Require: G = (V.£. A)
1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p}; 2 23 3
4: repeat
50 Cgli+1)=Cgli);
A e () de EX-20 = poamagion ™ ||EX3" — sembpostive conpecton
8: for all C; € Cg(i),l # m do 0 — ~\ / "'T‘“‘x
9: if J4i € C; satisfies Proposition 1(ii) then / ffa]r— ~ N A | N\
10: vﬁ?mp = V{’T;n] U V(?E], / : ] \
L1 Strrmp = S{ﬂnj L E{TE-} U S; | Fi Il
12: Ctr:mp = Cp U \ — /
13: Cgl:?:-l-l} = Cg{i-l—l]"\l{crn,{:;}L'{{jtff,nJ}i N\ Y /
14: check ¢« true; I G '\i ',':?}
15: break: -
16: end if
17: end for EX-4:
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).
Require: G = (V.£. A)
1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p}; 2 23 3
4: repeat
50 Cgli+1)=Cgli);
A e () de EX-20 = poamagion ™ ||EX3" — sembpostive conpecton
8: for all C; € Cg(i),l # m do 0 — ~\ / "'T‘“‘x
9: if J4i € C; satisfies Proposition 1(ii) then / ffa]r— ~ N A | N\
10: vﬁ?mp = V{’T;n] U V(?E], / : ] \
L1 Strrmp = S{ﬂnj L E{TE-} U S; | Fi Il
12: Ctr:mp = Cp U \ — /
13: Cgl:?:-l-l} = Cg{i-l—l]"\l{crn,{:;}L'{{jtff,nJ}i N\ Y /
14: check ¢« true; I G '\i ',':?}
15: break: -
16: end if
17: end for EX-4:
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).
Require: G = (V.£. A)
1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p}; 2 23 3
4: repeat
5. Cgli+1)=Cgli);
5. Torall C, € Co()do X2 = et || = g cpgecr
8: for all C; € Cg(i),l # m do 0 — ~\ / "'T‘“‘x
9: if J4i € C; satisfies Proposition 1(ii) then / ffa]r— ~ N A | N\
10: vﬁ?mp = V{’T;n] U v(ﬁ]u / - ] \
11: Strrmp = 'S{T:r-n] L g{,ﬂ-} U S, | / |
12: Ctr:mp = Cp U \ — /
13: Cg{:i-l-l} = Cg{i-l—l]"\l{crn,{:;}L'{{jtff,nIJ}i N\ Y /
14: check ¢+ true; G '\i —
15: break; S ==
16: end if
17: end for
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)




Model 1- static case

Algorithm 1 Finding all clusters of & under the matrix- EX-1:
weighted consensus protocol (8).
Require: G = (V.£. A)
1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p}; 2 23 3
4: repeat
50 Cgli+1)=Cgli);
A e () de EX-20 = poamagion ™ ||EX3" — sembpostive conpecton
8: for all C; € Cg(i),l # m do 0 — ~\ / "'T‘“‘x
9: if J4i € C; satisfies Proposition 1(ii) then / ffa]r— ~ N A | N\
10: vﬁ?mp = V{’T;n] U V(?E], / : ] \
L1 Strrmp = S{ﬂnj L E{TE-} U S; | Fi Il
12: Ctr:mp = Cp U \ — /
13: Cgl:?:-l-l} = Cg{i-l—l]"\l{crn,{:;}L'{{jtff,nJ}i N\ Y /
14: check ¢« true; I G '\i ',':?}
15: break: -
16: end if
17: end for EX-4:
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)
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1: 1 =1);
2: Find the set of positive trees {7q,...,7,} in G;
3: Cg(0) = {Cm ={V(Tm)}. m=1,...,p}; 2 23 3
4: repeat
50 Cgli+1)=Cgli);
A e () de EX-20 = poamagion ™ ||EX3" — sembpostive conpecton
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14: check ¢« true; G '\i —
15: break: -
16: end if
17: end for EX-4:
18: if check == true then
19: break;
20: end if
21:  end for
22: until Cg (i) = Cg(i — 1)




Part-2: Analysis
Problem 2-With Stubborn Nodes
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n Friedkin-Johnsen algorithm
zi(k+1) =X\ Y wi;Caj(k) + (1 — \;)x;(0)

j=1

Model:

Assumption: \

Assumption 1 (The\cmatrix ) The matriz C €
RY¥4 is such that A\ (C) = 1/is a simple eigenvalue
with an associated right (respectively left) eigenvector
¢ (respectively éT ). such that the eigenvectors satisfy
¢' ¢ = 1. Moreover, Re(A\p(C)) < 1,V k # 1.
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n Friedkin-Johnsen algorithm
zi(k+1) =X\ Y wi;Caj(k) + (1 — \;)x;(0)

j=1

Model:

Agreement:

» Tim 2(t) = [Tna+ (£~ L) ©C+Bo L™
Assumption:

x (B ® I7)x(0)
Assumption 1 (The\cmatrix ) The matriz C €

RY¥4 is such that A\ (C) = 1/is a simple eigenvalue
with an associated right (respectively left) eigenvector
¢ (respectively éT ). such that the eigenvectors satisfy
¢' ¢ = 1. Moreover, Re(A\p(C)) < 1,V k # 1.
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n Friedkin-Johnsen algorithm
zi(k+1) =X\ Y wi;Caj(k) + (1 — \;)x;(0)

j=1

Model:

Agreement:

T
Assumption:

Assumption 1 The&«matrix The matrizx C € .

Raxd ispsur:h thgt M(C) =1 3'2? a simple eigenvalue 2 Overall influence of stubborn
with an associated right (respectively left) eigenvector agents
¢ (respectively éT ). such that the eigenvectors satisfy
¢' ¢ = 1. Moreover, Re(A\p(C)) < 1,V k # 1.




Part-2: Analysis
Problem 3-Signed Matrices

(Separated positive coupling or negative coupling)
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o The diagonal terms. 1.e.. a}fk if 1t 1s positive and as it increases, the agreement between x;; and x;; speeds up.
Otherwise, if it 1s negative and as it increases in absolute value, the anti-agreement between z;; and x; ; becomes
significant.
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o The diagonal terms, ie,
Otherwise, 1f it 1s
significant.

<a;’.. 1f it 1s positive and as it increases, the agreement between xz;x and x; x speeds up.
ative and as 1t increases in absolute value, the anti-agreement between z; ;. and x; ; becomes

o The off-diagonal terms. For example, let us consider the effect of a5”. We can consider the following four cases
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ases, the agreement between x;; and z; 5 speeds up.

« The diagonal terms, i.e.. a;” . if it is positive and as it inc
. the anti-agreement between z; ; and x; ; becomes

Otherwise, 1f it 1s negative and as it increases in absolute val
significant.

o The off-diagonal terms. For example, let us consider the effect of a5”. We can consider the following four cases
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. 1,] 1,] 1,7 ]
i1 1,1 @12 1.d Tjl — T
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: JEN; :
.‘1_ i-_ ] - —_ .

T
Fuy E
FEN;

ases, the agreement between x;; and z; 5 speeds up.

« The diagonal terms, i.e.. a;” . if it is positive and as it inc
. the anti-agreement between z; ; and x; ; becomes

Otherwise, 1f it 1s negative and as it increases in absolute val
significant.

« The off-diagonal terms. For example, let us consider the effect of a3”. We can consider the following four cases
) Case 1: (z;2 —x;2) > 0and (z;1 —x;1) =0
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- ﬂ.hj aa ij at j »
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ases, the agreement between x;; and z; j qpeedq up.
. the anti-agreement between z; ; and x; ; becomes

o The diagonal terms. 1.e.. a,h - 1f 1t 18 positive and as it in¢
Otherwise, 1f 1t 1s negdtwe and as 1t increases in absolute val

significant.

o The off-diagonal terms. For example, let us consider the effect of az 1- We can consider the following four cases

1) Case 1: (z;2 —xi2) > 0and (z;1 — ;1) > 0 o) -4
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- ﬂ.hj aa ij at j »
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ases, the agreement between x;; and z; 5 speeds up.
. the anti-agreement between z; ; and x; ; becomes

o The diagonal terms. 1.e.. a,h - 1f 1t 18 positive and as it in¢
Otherwise, 1f 1t 1s negdtwe and as 1t increases in absolute val

significant.

o The off-diagonal terms. For example, let us consider the effect of az 1- We can consider the following four cases
) Case I: (zj2 —x;2) >0and (z;; —x;1) >0

2) Case 2: (I-j:g — T 2) E 0 and (z;4 i1) <0 I -
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ases, the agreement between x;; and z; 5 speeds up.
. the anti-agreement between z; ; and x; ; becomes

o The diagonal terms. 1.e.. a,h - 1f 1t 18 positive and as it in¢
Otherwise, 1f 1t 1s negdtwe and as 1t increases in absolute val

significant.

o The off-diagonal terms. For example, let us consider the effect of az 1- We can consider the following four cases
) Case 1: (zj2 —xi2) > 0and (z;; —x;1) =0
2) Case 2: (xj2 —x;2) > 0and (z;7 —x;1) <0

3) Case 3: (zj2 —=i2) <0and (z;1 —x;1) =0 E—)
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ases, the agreement between x;; and z; 5 speeds up.
. the anti-agreement between z; ; and x; ; becomes

o The diagonal terms. 1.e.. ﬂm - 1f 1t 18 positive and as it in¢
Otherwise, 1f 1t 1s negdtwe and as 1t increases in absolute val
significant.

o The off-diagonal terms. For example. let us consider the effect of agjl We can consider the following four cases
1) Case 1 (j2 —xi2) =0 and (Ij 1—xi1) =0
2) Case 2: (xj2 —x;2) > 0and (z;7 —x;1) <0

3) Case 3: (zj2 — 2;2) < 0 and (Ij 1—x;1) =0

4) Case 4: (zj0 —;2) <0and (z;; —z; ;) < ( ) =



Model 3 - Inverse Proportional Couplings

. 1,7 1,7 1,3 ]
T 1 11 12 ay’q Ti1— Tia
- n 1.7 1,7 1,7 .
Li,2 Z Gg1) Qo9 Ay g Lj,2 — Ti,2
JEN; . . .
T i3 i,J i, T g —
i,d Qgq) Qg2 -+ Qg4 3.d i,d
T
Fay
= Xi = E A;; (XJ i)
JEN;

o The diagonal terms. 1.e.. ﬂm .- 1f 1t 18 positive and as it increases, the agreement between z; 5 and z; x speeds up.
Otherwise. 1f it 1s negatwe and as it increases in absolute value. the anti-agreement between z; ;. and z; ;. becomes

significant.

o The off-diagonal terms. For example, let us consider the effect of ﬂ;ﬂ- We—ean consider the following four cases
Case 1: (zj2 —2i2) = 0and (z;1 — 1) 2 0 oo—) + For consensus!
2) Case 2: (xj0—a;2) = 0and (z;7 —x;7) <0 E—) ’
3) Case 3: (zj2 —x;2) <0 and (x;1 1?1,1) >0 — -
) _Case 4: (25— 2;2) <0and (z;; — ;1) < ST
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o The diagonal terms. 1.e.. ‘H .- 1f 1t 18 positive and as it increases, the agreement between z; 5 and z; x speeds up.
Otherwise. 1f it 1s negatwe and as it increases in absolute value. the anti-agreement between z; ;. and z; ;. becomes
significant.

o The off-diagonal terms. For example, let us consider the effect of agjl We—ean consider the following four cases
- . . ~ : . >
Case 1: (zj2 —i2) 2 0 and (zj1 — ;1) 2 0 eo—) + For consensus!
2) Case 2: (xj2 —x;2) > 0and (z;7 —x;1) <0 E—)
3) Case 3: (zj2 —zi2) <0 and (z;, 5'3:,1) >0 — - Cooperative opinion
4 _Case 4: (z;9 —2;0) <0and (z;; — z;1) < (0 S ———— - dynamics
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o The diagonal terms. 1.e.. ﬂm .- 1f 1t 18 positive and as it increases, the agreement between z;; and z; x speeds up.
Otherwise. 1f it 1s negatwe and as it increases in absolute value, the anti-agreement between z; ;. and z; ;. becomes

significant.

« The off-diaeonal terms. For example, let us consider the effect of ai’j We-ean consider the following four cases
Case 1: (zj2 —xi2) = 0and (z;1 —x;1) =2 0 So—) +4>- .
2) Case 2: (xj2 —x;2) > 0and (z;7 —x;1) <0 — e
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Definition 2 (Structurally balanced): 1] A network Gi(V, Ay = [afhé‘) 1s said Sn'uc'nu'uh’\' balanced on topic k if it
admits‘. a bipartition of the nodes Vy .. Vo 1, Vi U Vo =V, Vi i N Va . = 0, such that Sk 20V j Vi (I € {1,2}),
SL <01 € Vig,j€Vme,m#Il, (m,le{1,2}). Itis said structurally unbalanced otherwise.

3 1

2
Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.
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Definition 2 (Structurally balanced): 1] A network Gi(V, Ay = [a;jk],c‘f) is said structurally balanced on topic k if it
admits a bipartition of the nodes V; x, Vo 1, Vi U Vo =V, Vi N Va . = 0, such that s > 0,Vi,j € Vi (1 € {1,2}).
ka <0,i € Vg, € Vi, m#L (m, 1 €{1,2}). It is said structurally unbalanced otherwise.

"With slight change of 9 4
formulation...... ”

C. Altafini, “Consensus problem of networks with antagonistic =
interactions,” IEEE Trans. on Automatic Control, vol. 58. no. 4, pp. 935-
946, 2013

2

Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.
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Definition 2 (Structurally balanced): 1] A network Gi(V, Ay = [a;jk],ff) is said structurally balanced on topic k if it
admits‘. a bipartition of the nodes V; x, Vo 1, Vi U Vo =V, Vi N Va . = 0, such that s > 0,Vi,j € Vi (1 € {1,2}).
Sk <01 € Vig,j€Vme,m#Il, (m,le{1,2}). Itis said structurally unbalanced otherwise.

Positive
coupling

Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.
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Definition 2 (Structurally balanced): 1] A network Gi(V, Ay = [a;jk],ff) is said structurally balanced on topic k if it
admits a bipartition of the nodes V; x, Vo 1, Vi U Vo =V, Vi N Va . = 0, such that s > 0,Vi,j € Vi (1 € {1,2}).
ka <0,i € Vg, € Vi, m#L (m, 1 €{1,2}). It is said structurally unbalanced otherwise.

2,4, 6} (black) positive links; (red) negative links.
Negative
coupling

Fig. 1: Structural balanced graph: V; = {1,3,5} and Vg%
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Definition 2 (Structurally balanced): |1] A network Gi(V, Ar = [aﬁc],c‘f) is said structurally balanced on topic k if it
admits a bipartition of the nodes V; x, Vo 1, Vi U Vo =V, Vi N Va . = 0, such that s > 0,Vi,j € Vi (1 € {1,2}).
Sz’f}c <0,i € Vg, € Vi, m#L (m, 1 €{1,2}). It is said structurally unbalanced otherwise.

3 1

2

Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.

Theorem 1: There are some possible situations: All positive couplings

1) For any topic p € {1,...,d} if s%2 = 1,VY(i,5) € £ then it follows from the second term of (12) all agents reach

P.p
consensus on topic p, i.e., Tip = Tjp, 74, J € V.

T
T
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Definition 2 (Structurally balanced): |1] A network Gi(V, Ar = [aﬁc],c‘f) is said structurally balanced on topic k if it
admits a bipartition of the nodes V; x, Vo 1, Vi U Vo =V, Vi N Va . = 0, such that s > 0,Vi,j € Vi (1 € {1,2}).
Sz’f}c <0,i € Vg, € Vi, m#L (m, 1 €{1,2}). It is said structurally unbalanced otherwise.

3 1

2

Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.

Theorem 1: There are some possible situations: All positive couplings (cooperative dynamics)

o

1) For any topic p € {1,...,d} if s%2 = 1,Y(i,5) € £ then it follows from the second term of (12) all agents reach

P.p
consensus on topic p, i.e., Tip = Tjp, 74, J € V.

T
T
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Definition 2 (Structurally balanced): |1] A network Gi(V, Ar = [.-:.r, ] £) is said structurally balanced on topic k if it
admit&.‘. a bipartition of the nodes V; ., Vo, Vi U Vo =V, Vi N Vg,;f = (), such that skfk > 0,Vi, 7 € Vi (1 € {1,2}),
S;L <01 € Vig,j€Vme,m#Il, (m,le{1,2}). Itis said structurally unbalanced otherwise.

3 1

1 2
Fig. 1: Structural balanced graph: V; = {1,3,5} and V, = {2,4,6}: (black) positive links; (red) negative links.

Theorem 1: There are some possible situations:

. bipartite
2) G, ={V,A, =[a}7].E} is structurally balanced then the system reaches bipartite consensus on topic p. i.e.. agents

m Vi, and Vo, reaa,h consensus values which are in same absolute value but opposite signs.
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Definition 2 (Structurally balanced): |1] A network Gi(V, Ar = [.-:.r, ] £) is said str ucnuufh balanced on topic k if it
admit&.‘. a bipartition of the nodes V; ., Vo, Vi U Vo =V, Vi N Vgﬁ;f = (), such that Sk._;: > 0,Vi, 7 € Vi (1 € {1,2}),
S;L <01 € Vig,j€Vme,m#Il, (m,le{1,2}). Itis said structurally unbalanced otherwise.

3 1

2
Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.

Theorem 1: There are some possible situations:

3) The interaction among agents in a single topic p, ie., G, = {V, A, = [a E} 18 structurally unbalanced. i, =

Lip = OVLJ = V

ﬁp]
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Definition 2 (Structurally balanced): |1] A network Gi(V, Ar = [.-:.r, ] £) is said str ucnuufh balanced on topic k if it
admit&.‘. a bipartition of the nodes V; ., Vo, Vi U Vo =V, Vi N Vgﬁ;f = (), such that Sk._;: > 0,Vi, 7 € Vi (1 € {1,2}),
S;L <01 € Vig,j€Vme,m#Il, (m,le{1,2}). Itis said structurally unbalanced otherwise.

3 1

2
Fig. 1: Structural balanced graph: V; = {1,3,5} and Vo = {2,4,6}: (black) positive links; (red) negative links.

Theorem 1: There are some possible situations:

4) A‘;‘;uminﬁ that there exist anti-consensus on more than two distinct topics, 1.e., 1 and 2, and the corresponding graphs

G = {V [a;jl]é'} and Gy = {V, [ay%],E} are structural balanced. 1f there exists two agents k and m such that

s‘;“ "< 0 and sg_’g" < 0. that 1s, anti-consensus couplings of two members £ and m on topics 1 and 2. then either
Tjl1 = 0 or ) — 0,5 € V.
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