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Abstract: The aim of this paper is to present the historical background of artificial 
life based stochastic optimization algorithms from the viewpoint of Neumann’s 
Self-reproduction scheme. The theory of evolutionary and swarm optimization are 
overviewed and compared from this viewpoint. A detailed application example is 
given to demonstrate how these tools can be applied to solve process optimization 
problems. The performances of Evolutionary Strategy, Particle Swarm 
Optimization, Simulated Annealing and Sequential Quadratic Programming based 
algorithms are compared.   
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1. Introduction 

Artificial life (A-Life) attempts to understand the essential general properties of 
living systems by synthesizing life-like behaviour in software, hardware and other 
human-made systems. A-Life includes two-folded research topic: (1) A-Life 
studies how computational techniques can help when studying biological 
phenomena. (2.) A-Life studies how biological techniques can help out with 
computational problems. The second research topic has leaded to such algorithms 
as Evolutionary Algorithms and Particle Swarm optimization, which are the most 
popular stochastic optimization techniques.  

If any person could be called the father of A-life, it would be John von Neumann. 
His well known self-reproduction scheme can be interpreted as the general version 
of the previously mentioned stochastic optimization techniques. The aim of this 
paper is to discuss the common backgrounds of these algorithms and demonstrate 
how these tools can be applied in process engineering. The presented situational 
examples and tools can be downloaded from the website of the author. 



2. Neumann’s Machine of Self-Reproduction 

In the late 1940’s John von Neumann began to work on what he intended as a 
comprehensive “theory of complex automata”. He started to work on a book 
length manuscript on this subject in 1952. However, he put this aside in 1953, 
apparently due to pressure of other work. This manuscript was eventually edited, 
and combined for publication with some related lecture transcripts, by Bruks in 
1966 [1,2]. In this work von Neumann developed his famous logical model of 
self-reproduction as an answer to his observation that, unlike machines, biological 
organisms have an ability to self-replicate while increasing their complexity 
without limit.  

As opposed to this natural self-reproduction, mechanical artefacts are produced 
via more complicated factories and can only degenerate in their complexity. 
Neumann was searching for systems that may self-reproduce while possibly 
increasing their complexity. Neumann’s model is based on a memory-stored 
description, PHI(X), that can be interpreted by a universal constructor 
automaton A to produce any automaton X; if a description of A, PHI(A), is fed to 
A itself, then a new copy of A is obtained. In addition to the universal constructor, 
an automaton B capable of copying any description, PHI(X), is included in the 
self-replication scheme. A third automaton C is also included to effect all the 
manipulation of descriptions necessary - a sort of operative system. To sum it up, 
the self-replicating system contains the set of automata (A + B + C) and a 
description PHI(A + B + C). The description, or program, is used in two different 
ways: it is both translated and copied. In the first role, it controls the construction 
of an automaton by causing a sequence of activities (active role of description). In 
the second role, it is simply copied (passive role of description).  Perhaps the most 
important consequence of the requirement of memory-based descriptions in Von 
Neumann's self-reproduction scheme is its opening the possibility for open-ended 
emergent evolution. As Von Neumann discussed, if the description of the self-
reproducing automata is changed (mutated), in a way as to not affect the basic 
functioning of (A + B + C) – that is, if the semantic closure in not destroyed – 
then, the new automaton (A + B + C)` will be slightly different from its parent. 
Von Neumann used a new automaton D to be included in the self-replicating 
organism, whose function does not disturb the basic performance of (A + B + C); 
if there is a mutation in the D part of the description, say D`, then the system (A + 
B + C + D) + PHI(A + B + C + D`) will produce (A + B + C + D`) + PHI(A + B 
+ C + D`). Von Neumann further proposed that non-trivial self-reproduction 
should include the "ability to undergo inheritable mutations as well as the ability 
to make another organism like the original", to distinguish it from "naive" self-
reproduction.  



Since computers were nothing more than information driven machines Neumann 
felt that a computer could eventually emulate life by passing its information along 
to a new generation of regenerating computers. Just years after von Neumann 
postulated this theory, Watson and Crick confirmed his beliefs when they 
discovered the structure and nature of DNA. It has turned out, the ability to 
transmit mutations is precisely at the core of the principle of natural selection of 
modern Darwinism. In principle, if the language of description is rich enough, an 
endless variety of organisms can be evolved.  

Neumann was never more than a theorist in Artificial Life. He imagined an 
incredible creature that lived in an environment with infinite resources. The 
creature itself was very intricate, being made up of cells with 29 different states. 
At the time he envisioned this creature the technology was not available to create 
it. Even today the undertaking may not be possible.  

However, these works initialized non-gradient based, probabilistic search 
algorithms that are generally mimic some natural phenomena, for example 
evolutionary algorithms and simulated annealing, and swarm intelligence. 
Evolutionary algorithms model the evolution of a species, based on Darwin's 
principle of survival, simulated annealing is based on statistical mechanics and 
models the equilibrium of large numbers of atoms during an annealing process, 
while swarm intelligence is the property of a system whereby the collective 
behaviours of (unsophisticated) agents interacting locally with their environment 
cause coherent functional global patterns to emerge.  

In the remaining paper these algorithms will be overviewed and applied, and some 
discussion will be given how these tools are connected to the original self-
replication scheme of John von Neumann. 

3. Evolutionary Algorithms 

The Evolutionary Algorithm (EA) is an optimization method which uses the 
previously presented computational model of natural selection. EAs work with a 
population of potential solutions to a problem, where each individual within the 
population represents a particular solution, generally represented in some form of 
genetic code.  A single process engineering problem can contain a mixture of 
decision variable formats (numbers, symbols, and other structural parameters). 
Since the EA operates on a “genetic” encoding of the optimized variables, diverse 
types of variable can be simultaneously optimized. The fitness value of the 
individual expresses how good the solution is at solving the problem. Better 
solutions are assigned higher values of fitness than worse performing solutions.  
The key of EA is that the fitness also determines how successful the individual 
will be at propagating its genes (its code) to subsequent generations. 



Table 1. A typical evolutionary algorithm 

 procedure EA; { 
  Initialize population; 
  Evaluate all individuals; 
  while (not terminate) do  { 
   Select individuals; 
   Create offspring from selected individuals 
    using Recombination and Mutation; 
   Evaluate offspring; 
   Replace some old individuals by some offspring; 
  } 
 } 

 

In practical system identification, process optimization or controller design it is 
often desirable to simultaneously handle several objectives and constraints. For 
the purposes of the EA, these must be combined to form a single fitness value. 
The weighted-sum approach has proved popular in the literature, since it is 
amenable to a solution by conventional EA methods, but Pareto-based multi-
objective techniques are likely to surpass this in the future. 

The population is evolved over generations to produce better solutions to the 
problem. The evolution is performed using a set of stochastic genetic operators, 
which manipulate the genetic code used to represent the potential solutions. Most 
evolutionary algorithms include operators that select individuals for reproduction, 
produce new individuals based on those selected, and determine the composition 
of the population at the subsequent generation. 

Table 1. outlines a typical EA. A population of individuals is randomly initialized 
and then evolved from generation to generation by repeated applications of 
evaluation, selection, mutation and recombination. 

In the selection step, the algorithm selects the parents of the next generation. The 
population is subjected to “environmental pressure”, which means the selection of 
the fittest individuals. The most important automated selection methods are 
Stochastic Uniform Sampling, Tournament Selection, Fitness Ranking Selection 
and Fitness Proportional Selection. 

After the selection of the individuals, the new individuals of the next generation 
(also called offspring) are created by recombination and mutation. 

• The recombination (also called crossover) exchanges information 
between two selected individuals to create one or two new offspring. 

• The mutation operator makes small, random changes to the genetic 
coding of the individual. 



 

 0 1 1 0 1 0 1 1  0 1 1 0 0 0 1 1 

Mutation 

0 1 1 0 1 0 1 1 1 0 1 1 1 0 1 1 

Recombination 

1 0 1 1 1 0 1 0 0 1 1 0 1 0 1 0 

 
Figure 1. Mutation and recombination of binary strings 

The final step of the evolutionary procedure is the replacement, when the new 
individuals are inserted into the new population. Once the new generation has 
been constructed, the processes that result in the subsequent generation of the 
population are begun once more. 

Since, an EA search is directed and, represents potentially much greater efficiency 
than a totally random or enumerative search [3]. The main benefit of the EA is that 
it can be applied to a wide range of problems without significant modification. 
However, it should be noted that EA has several implementations: Evolutionary 
Programming (EP), Evolutionary Strategy (ES), Genetic Algorithm (GA) and 
Genetic Programming (GP), and the selection of the proper technique and the 
tuning of the parameters of the selected technique require some knowledge about 
these techniques. 

The GA, as originally defined by John Holland and his students in the 1960s [4], 
uses bit-string representation of the individuals. Depending on the problem, the 
bit-strings (chromosomes) can represent numbers or symbols. The recombination 
means the swapping of strings fragments between two selected parents (see Figure 
1), while the mutation means the flip of a few bits in these strings. 

The recombination has much bigger probability than the mutation, so the 
recombination is often said to be “primary searching operator” [4]. GA applies 
simple replacement technique: all the original individuals are replaced by the 
created offspring; expect in case of the elitist strategy when some of the best 
individuals are also placed into the next generation. 

Contrary to GA, ES typically searches in continuous space. The main difference 
from GA is that ES uses real-valued representation of the individuals.  The 
individuals in ES are represented by n-dimensional vectors ( nℜ∈x ), often 
referred as object variables.  

To allow for a better adaptation to the particular optimization problem, the object 
variables are accompanied by a set of the so-called strategy variables. Hence, an 
individual ( )jjj σxa ,=  

consists of two components, the object variables, 

[ ]ijjj xx ,1, ,...,=x , and strategy variables, [ ]njjj ,1, ,...,σσ=σ .  



Because in the nature small changes occur frequently but large ones only rarely, as 
mutation operator normally distributed random numbers are added to the 
individuals:  

   ( )ijijij Nxx ,,, ,0 σ+=     (1) 

Before the update of the object variables, the strategy variables are also mutated 
using a multiplicative normally distributed process: 
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with ( )( )1,0'exp Nτ  as a global factor which allows an overall change of the 
mutability and ( )( )1,0exp iNτ  allowing for individual changes of the mean step 
sizes. The parameters can be interpreted in the sense of global learning rates. 
Schwefel suggests to set them as 
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Recombination in ES can be either sexual (local), where only two parents are 
involved in the creation of an offspring, or global, where up to the whole 
population contributes to a new offspring. Traditional recombination operators are 
discrete recombination, intermediate recombination, and geometric recombination, 
all existing in a sexual and global form.  When F and M denote two randomly 
selected individuals from the μ parent population, the following operators can be 
defined [5,6]: 
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The selection is stochastic in the ES. First we chose the best μ individuals to be 
parents, and then we select the parent-pairs uniformly randomly from these 
individuals. 

Somewhat different to the generic evolutionary algorithm, selection is performed 
after the genetic operators have been applied. The standard notations in this 
domain, (μ+λ)-ES and (μ,λ)-ES, denote algorithms in which a population of μ 
parents generates λ offspring. The next generation is created by selecting the 
fittest m individuals. In the case of (μ,λ)-ES only the λ offspring are considered for 
selection, thus limiting the ‘life’ of an individual to one generation, while in the 
(μ+λ)-ES the μ parents are also considered for selection. 



Evolutionary Programming (EP) was developed by Fogel et al. [7] independently 
from ES. Originally, it was used to achieve machine intelligence by simulated 
evolution. In the EP there are μ individuals in every generation. Every individual 
is selected and mutated (there is no recombination). After the calculation of the 
fitness values of the new individuals, μ individuals are selected to form the next 
generation from the μ+μ individuals, using a probabilistic function based on the 
fitness of the individuals. 

4. Particle Swarm Optimization 

4.1. The Algorithm 

There are two popular swarm inspired methods in computational intelligence 
areas: Ant colony optimization (ACO) and particle swarm optimization (PSO). 
ACO was inspired by the behaviours of ants and has many successful applications 
in discrete optimization problems. The particle swarm concept originated as a 
simulation of simplified social system. The original intent was to graphically 
simulate the choreography of bird of a bird block or fish school. However, it was 
found that particle swarm model can be used as an optimizer. Suppose the 
following scenario: a group of birds are randomly searching food in an area. There 
is only one piece of food in the area being searched. All the birds do not know 
where the food is. But they know how far the food is in each iteration. So what's 
the best strategy to find the food? The effective one is to follow the bird which is 
nearest to the food. 

Particle swarm optimization (PSO) is based on this scheme. This stochastic 
optimization technique has been developed by Eberhart and Kennedy in 1995 [8]. 
In PSO, the potential solutions, called particles, fly through the problem space by 
following the current optimum particles. All of particles have fitness values which 
are evaluated by the fitness function to be optimized, and have velocities which 
direct the flying of the particles.  

PSO is initialized with a group of random particles (solutions) and then searches 
for optima by updating generations. In every iteration, each particle is updated by 
following two "best" values. The first one is the best solution (fitness) it has 
achieved so far. (The fitness value is also stored.) This value is called pbest. 
Another "best" value that is tracked by the particle swarm optimizer is the best 
value, obtained so far by any particle in the population. This best value is a global 
best and called gbest.  



When a particle takes part of the population as its topological neighbors, the best 
value is a local best and is called lbest. 

( ) ( ))(())(())()1( 21 krandckrandckwk jgbestjpbestjj xxxxvv −⋅⋅+−⋅⋅+⋅=+  (5) 

 dtkkk jjj ⋅++=+ )1()()1( vxx  (6) 

where v is the particle velocity, persent is the current particle (solution), pbest and 
gbest are defined as stated before, rand() is a random number between [0,1), c1, c2 
are learning factors usually c1 = c2 = 2. Table 2.  

shows the pseudo code of the PSO algorithm. 

The role of the, w, inertia weight in Eq. (5), is considered critical for the PSO’s 
convergence behaviour. The inertia weight is employed to control the impact of 
the previous history of velocities on the current one. Accordingly, the parameter 
regulates the trade–off between the global and local exploration abilities of the 
swarm. A large inertia weight facilitates global exploration (searching new areas), 
while a small one tends to facilitate local exploration, i.e. fine–tuning the current 
search area.  

4.2. PSO vs. ES 

As can be seen, PSO shares many similarities with evolutionary computation 
techniques. Both algorithms start with a group of a randomly generated 
population, both have fitness values to evaluate the population. Both update the 
population and search for the optimum with random techniques. Both systems do 
not guarantee success. 

The main difference between these algorithms is that PSO does not have genetic 
operators like crossover and mutation. Particles update themselves with the 
internal velocity. They also have memory, which is important to the algorithm. 

Table 2.: PSO algorithm 

 procedure PSO; { 
  Initialize particles; 
  while (not terminate) do { 
   for each particle { 
    Calculate fitness value; 
    if fitness < pBest than  pBest = fitness; 
   } 
   Choose the best particle as the gBest; 
   for each particle { 
     Calculate particle velocity; 
     Update particle position; 
    } 
  } 
 } 



Compared with evolutionary algorithms, the information sharing mechanism in 
PSO is significantly different. In EAs, chromosomes share information with each 
other. So the whole population moves like a one group towards an optimal area. In 
PSO, only gBest (or lBest) gives out the information to others. It is a one -way 
information sharing mechanism. The evolution only looks for the best solution. 
Compared with EAs, all the particles tend to converge to the best solution quickly 
even in the local version in most cases. 

Compared to EA, the advantages of PSO are that PSO is easy to implement and 
there are few parameters to adjust. Hence, PSO has been successfully applied in 
many areas: function optimization, artificial neural network training, fuzzy system 
control, and other areas where GA can be applied. In the following section we will 
demonstrate how this tool can be applied in process optimizations. 

5. Application Example 

The performance of the proposed optimization techniques are illustrated in the 
model-based temperature profile optimization of beer fermentation. During the 
beer fermentation a temperature profile is applied to drive the process so as to 
obey to certain constraints. The design of this temperature profile is an 
optimization problem where the objective is to optimize the quality of the beer. 

In this paper a kinetic model published by Andres-Toro [9] has been used to 
estimate the effect of the temperature profiles. This model has been developed 
from experimental data and shows good results in the aspect of a realistic view of 
the fermentation process. The model takes into account seven components: three 
components of the biomass (latent, active, dead), ethanol and sugar, and two 
important byproducts: ethyl acetate and diacetyl. The model equations and 
parameters are taken from the article of Carrillo-Ureta [10]. 

A good temperature profile should result in high ethanol, low sugar and ethyl 
acetate concentrations, a very low diacetyl and biomass concentrations, and 
relatively smooth temperature profile. Hence we used the next performance index: 

 biomassdiacetylacetatethanol CCCCJ 10102 −−−=  (7) 

where the Cx denotes the final concentration of x component (the operation time is 
150 hours). The optimization goal is maximization of (7) performance index. 

In order to apply the optimization algorithms for this problem, it is necessary to 
design a suitable representation of the temperature profile. For this purpose a 
simple but effective method has been developed. The profile is divided to 20 
segments, defined by 22 knots. Hence, 42 design variables of the optimization 



problem are the time values and temperatures of breakpoints for the possible 
piecewise-linear trajectories.  

To analyze the Artificial Life algorithms, three tests were performed: nonlinear 
Sequential Quadratic Programming (SQP), Evolutionary Strategy (ES) and 
Particle Swarm Optimization (PSO). The function evaluation number was limited 
to 2500, which was enough large for this problem.  

Beside these tools the simulated annealing has been also applied to this problem. 
Simulated annealing is based on an analogy with thermodynamics, specifically 
with the way that liquids freeze and crystallize, or metals cool and anneal. This 
general randomization technique can help to avoid the problem of getting stuck in 
a local minimum and to lead towards the globally optimum solution. The applied 
adaptive simulated annealing (ASA) is based on Monte Carlo importance-
sampling technique for doing large-dimensional path integrals arising in statistical 
physics problems (also influenced by Neumann) [13]. All of these algorithms have 
been implemented in MATLAB, and the code can be downloaded from the 
website of the author. Table 3. shows the results of the four methods. 

Table 3.: Resulted performance indexes achieved by SQP, ASA, ES and SPO 

 SQP ASA ES PSO 

Performance (J) 38.8536 39.12 39.1648 39.1755 
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Figure 2.: Resulted temperature and concentration profiles  

by SQP (left) and SPO (right) 



6. Conclustions 

Von Neumann believed in the logic behind life. In fact he viewed life as a 
complex machine, as many have done before him (such as Descartes) [11]. He 
wanted to create life (artificially) himself, or at least machines based on the 
concepts of life. He approached this problem by simplifying life, but he didn't 
carry this far enough, since his construct was (and still is!) too complex for any 
reasonable application. Hence, von Neumann was never more than a theorist in 
Artificial Life. He imagined an incredible creature that lived in an environment 
with infinite resources. The creature itself was very intricate, being made up of 
cells with 29 different states. At the time he envisioned this creature the 
technology was not available to create it. Even today the undertaking may not be 
possible. However, these works initialized non-gradient based, probabilistic search 
algorithms that are generally mimic some natural phenomena, for example genetic 
algorithms and simulated annealing.  

In this paper, a fairly recent type of probabilistic search algorithms, called Particle 
Swarm Optimization (PSO) and Evolutionary algorithms were investigated. The 
underlying idea of these algorithms is the separation of solutions for a particular 
problem (e.g. a machine) from descriptions of those solutions (memory). These 
algorithms work on these descriptions and not on the solutions themselves, that is, 
variation is applied to descriptions, while the respective solutions are evaluated, 
and the whole (description-solution) selected according to this evaluation. Such 
machine/description separation follows aspects of von Neumann's self-
reproducing scheme which is able to increase the complexity of the machines 
described. However, the form of organization attained by these algorithms is not 
self- organizing in the sense of a boolean network of cellular automata. Even 
though the solutions are obtained from the interaction of a population of elements, 
and in this sense following the general rules usually observed by computationally 
emergent systems, they do not self- organize since they rely on the selective 
pressures of some fitness function. The order so attained is not a result of the 
internal dynamics of a collection of interacting elements (like a random net), but is 
instead dictated by the external selection criteria. In this sense, ES and PSO follow 
a memory-based selective organization scheme. 

Although the presented probabilistic search algorithms generally require many 
more function evaluations to and an optimum solution, as compared to gradient 
based algorithms, they do provide several advantages. These algorithms are 
generally easy to program, can efficiently make use of large numbers of 
processors, do not require continuity in the problem definition, and generally are 
better suited for finding a global, or near-global, solution. In particular these 
algorithms are ideally suited for solving discrete and/or combinatorial type 
optimization problems, and have proved particularly successful in problems that 
are difficult to formalize mathematically, and which are therefore not conducive to 
classical analysis based engineering tools.  
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