
Intelligent Agents in Support System for Discrete
Processes Control Design

Budinská I., Frankovič B., Dang. T.T.

Inrtitute of Informatics SAS

Dúbravská cesta 9

845 07 Bratislava, Slovakia

utrrfran, utrrbudi, utrrtung@savba.sk

Abstract: The paper describes a multi-agent support system (MASS) for discrete
processes control design. The system is intended for discrete production processes.
However some functions may work for continuous production processes as well. The
proposed support system consists of several intelligent agents. The core of the systems
is created by a database of modeling, control and simulation tools (algorithms) for
discrete manufacturing processes and an intelligent decision system. The goal is to
utilize information from the system‘s database and support a process control design
on the basis of designer‘s requirements. The system consists of three modules:
modeling, simulation and control. The intelligent decision system provides relevant
reasoning about suitable algorithms and tools in respect of user’s requirements and
description of a process.

 Keywords: multi-agent systems, intelligent control, discrete processes, knowledge management

1. Introduction

A multi agent support system (MASS) for producing systems is presented in this
paper. A production system control design includes three phases. First a model of
production system has to be designed, then a control algorithm has to be suggested,
and finally the proposed solution should be simulated and verified. This procedure

determains the basic architecture of the MASS. There are many problems connected to
the system development. For start, knowledge has to be represented in such a form that
is either human or computer readable. For second, all data and knowledge about
specific domains has to be stored, archivated and organized for future reuse. Next,
there is importance to create new knowledge on the base of stored and archivated
information. The scope of the paper is to present a multi agent architecture to handle
knowledge and provide decision support for discrete processes modeling, control and
simulation. Description of the MASS is in Section 2. Section 3 describes agents’
behavior, Section 4 deals with knowledge management, particularly with konwledge
formalization, capturing and reusing. It is also adressed to reasoning, especialy to
Case-Based Reasoning (CBR). Section 5 provides some conclusions and future work
outline. At the end of the paper relevant references and resources for further
information are listed.

1.1. Related works
Case-based reasoning systems have a wide domain of applications. There are some
known applications that exploit CBR. [4] describes CBR in a Pellucid system, which
is an IST project aiming to support organizationally mobile employees in their work.
The purpose of CBR in Pellucid is to exploit historical experience and knowledge of
former employees to assist new employees to adapt in a new working environment. In
this system, case retrieval is based on a fuzzy classification as well, but calculation of
the similarity degree requires a comparison of each attribute of the first situation with
all attributes of the second one. The next system uses CBR for the same purpose is
GMCR (Graph Model for Conflict Resolution methodology) presented by [9]. CBR is
used to assist in identifying conflict situations and proposing their solutions, but case
retrieval is built in a graph model. [6] deals with the problem of recommendation
engineering that requires CBR, too. The similarity degree is calculated by a ratio
between the numbers of the same attributes and the different ones. [1] present a fuzzy
clustering method, which exploits a K-nearest neighbor search algorithm to extract a
similar situation. In this paper the feedback is used to improve extraction accuracy.
Further papers, which apply fuzzy sets to CBR, should be mentioned, namely [5], [10].
However, their work focuses more on introducing new operators to express more
complicated relationships among situations.

A similarity is usually evaluated by the distance between two nodes in n-dimensional
space. A number of CBR systems and their applications can be also found in [2].

2. Architecture of the system
The MASS consists of four modules. Each of them is created by one ore more agents.
Fig 1 depicts a general architecture of the system modules.

Figure 1: General architecture of the agent decision support system

The following agents in the system are considered:
Personal Assistant agent (PAA) – provides an intelligent interface between
a designer (a user) and the other agents in the system. PAA receives designer’s
requirements and description of the process to be controlled as inputs for reasoning
and decision making and returns suggested solution(s) for the user.
Modelling Agent (MA) – after receiving information about the process, search for
apropriate modelling tools and algorithms on the basis of previous cases. It returns
suggested algorithms and ask for more precise information accordig to a chosen
algoritm. The final decision on which algorith and/or tool has to be chosen is up to the
user. Finaly, Modelling agent returns a model of described production process.
Control Agent (CA)- receives a finaly chosen model with all necessary atributes
defined. On the basis of the model, CA searches for an appropriate control algoritms in
the database. Through PAA it negotiates with the user and finaly chooses appropriate
control algoritms. The user has to choose an algorith from the suggested ones and
specify all needed values for that. CA returns control algoritm for the process
according user’s specifications.
Simulation Agent (SA) – is responsible for simulation of control for the chosen
model and control algorithm with the aim to help the designer to assess the proposed
solution.
Monitoring Agent (MoA) - follows the system behavior after applying the
recommended method for designing the control. If all the requirements are satisfied,
then MoA updates the database by newly achieved results. That means the system
stores all solutions for the next reuse and application. Otherwise, the MA and CA have
to repeat their calculations.

User

Database

PA

MA CA MoA

SA C
A

D
-D

ec
is

io
n

Sy
st

em

All agents access the database through Search Agent (SeA).

MA, CA, and SA utilize case based reasoning in order to find the best solution for the
user.

Agents’ communication is clarified in a sequence diagram, Fig. 2.

Figure 2 A sequence diagram of the proposed support system.

3. Agents’ behavior in the MASS
Agents in a proposed system cooperate to find a solution to satisfy user’s
requirements. Solving a current problem means finding a similar case in case based
library, finding solutions assigned to the found case and suggest that solution(s) to the
user. The found solution has to be adapted to a current state, when the current state is
not identical with the one in the database. After proposed solution is adapted to a new
situation, it should be tested and when the proposed adapted solution shows to be
good, it is entered to a database as a new case related to a new solution.

An algorithm for assisting a user in modeling, designing the control system and
simulation is as follows:

Initialization: filling database with default data. There are two types of data in the
database: description of cases – basic attributes, set of default solutions. There are
relations among default cases and default solutions.

Input: User’s requirements are given through PA. Users are supervised to fill in a
questionnaire, where basic attributes for the current situation (description of
production process) are described. After user’s requirements are recorded, MASS
begins search for appropriate modeling tool.

1. MA asks SeA to find a similar situation from database of cases.
Requirements: search and data mining algorithms.

2. After finding similar case, related solutions – a method for modeling, are
sent to the user. The returned solution(s) may not be the right solution for the
current situation. It depends on degree of similarity of current and historical
cases. The user has to pick one of proposed solutions and then MA adapts it
to the current case, then proposes a solution (model with all necessary
parameters) to the user, simultaneously sends it to CA. MoA monitor all these
activities. After proposed solution is adapted and the user is satisfied with it,
a new case is entered to database with relation to a new solution. Otherwise a
new search is executed as long as a solution is found.

3. CA receives a (mathematical) model identified by MA and numerical
parameters entered by the user. CA works in the same manner like MA. It
asks SeA to find a similar model stored in database. On the basis of
numerical parameters of the model, CA adapts the past solution to the current
model and designs the control system.

4. MoA follows the system behavior after applying the designed control system.
If all requirements are satisfied, MoA updates the database by newly
achieved results. Otherwise a process is repeated as long as all requirements
are satisfied.

5. SA receives mathematical model and design of control system. Its goal is to
simulate proposed control system and verify it.

One agent can serve to many users and can access information in database only
through SeA. Such approach is used to synchronize an access the database to avoid
conflict situations (e.g., one agent performs database updating and at the same time
other one extracts information from it). Similarly, all communication between the user

and the CAS-Decision System is performed by PA, which provides an appropriate
interface to simplify the user work.

3.1. Two methods of cooperation among agents in the CBR
MASS

Cooperation among CBR agents involves exploiting the set all cases in common
memory of all agents and to reason about these cases using similarity-based reasoning.
A problem is solved on the base of knowledge that can be learned by another agent
within CBR MASS. Let’s suppose that one agent Ai has to solve a problem. It can ask
another agent Aj to find a similar case in database using its own method for evaluation
of similarity degree, or it can send together with the case description also a method
that might be used to retrieve similar case from database. A solution is assigned to a
case on the basis of database structure. One or more solution can be assigned to one
case.

In [8] two methods of cooperation in CBR systems are introduced. There are
Distributed Case Base Reasoning (DisCBR) and Collective case based reasoning
(ColCBR) described. The first methods means that agent delegate responsibility to
solve a problem to another agent(s) within a CBR MASS. The Collective CBR means,
that agents use common database and the same method to find appropriate solution of
a problem. While DistCBE requires capability of remote evaluation of cases and
solutions, ColCBR requires mobility of code, because methods of CBR have to be
transported from one agent to another.

CBR system building requires cooperation of domain and IT experts while default
cases and solution are entered to the system. Cases and solutions do not need to be
encoded in classical rules. Each case typically contains a description of the problem,
plus a solution and/or the outcome. Reasoning process and knowledge of experts about
how to solve a problem is not recorded but it is implicitly given in solutions related to
cases.

Case-based reasoning is often used for problem solving where a large amount of
historical data exists, or experts can give a large volume of examples, or where a lot of
valuable experience is recorded. Also CBR is preferred when there cannot be
formulated rules for reasoning, or when there are a lot of exceptions from formulated
rules. RBR are used when it is difficult to collect historical cases data.

CBR process includes a problem description, a new case specification, finding a
similar case in database, finding related solutions, adapting proposed solution, testing
adapted solution, confirmation of new solution, and learning new case with solution.

All case-based reasoning methods have some common steps:

− retrieve the most similar case (or cases) to a current case in the case library;
− reuse the retrieved case to try to solve the current problem;
− revise and adapt the proposed solution to a current case;
− record a new case with a new solution

Retrieving the most similar case is based on one of the similarity based reasoning
methods. The similarity based reasoning involves formalized description of case in a
case library. Two methods of similarity based reasoning are described in Section 4.5 in
this paper.

3.2. Case library for CBR
A case library is a relational database, which involves the important features of each
historical situation. Because the MASS has to work with different systems and kinds
of information, the case library must be generic enough to represent all systems and
their associated information. Determining which information is essential for storing is
too difficult, since it is impossible to record all information and, on the other hand,
because of practical reasons, the database should not be too large.

Other problems related to the database include the format used for data representation,
e.g., number, text, graph, etc., and the method used for encoding/decoding these data.
In the MASS, historical cases are represented by a number of basic attributes, which
are indexed in a hierarchical scheme. These attributes are expressed by number or text
(the example shown in Figure 3).

Fig. 3: An example of data representation

1. System 1.1 Linear
1.2 Non-linear
1.3 Discrete

1.3.1 Static
1.3.2
Dynamic

1.3.1.1
Complex
information
1.3.1.2
Uncertain

A case based library building for MASS is described in [3] The main database consists
of two parts. The first part stores a description of all historical situations provided by
the experts or added by users during customization of the MASS. A description of past
situation consists of a number of basic attributes defined in advance. For example,
situation si is a combination of a number of attributes as follows:

Let EL be a set of all possible attributes.

 si = { el1 ∪ el2 ∪ ….∪ eln } ; ∀ i ≠ j ∈ [1,n] ; eli ≠ elj ∈ EL.

In this representation, all the attributes are different each from other and they are
sorted in a fixed order in order to facilitate search and retrieval.

The second part implies all solutions associated with the cases stored in the first part
of the database.

4. Knowledge management for CBR MASS

4.1. Knowledge, information and data
The support system for control system designers is based on user requirements and
general knowledge about process control design. Generally system handles data – a
pure record of basic data about production processes (e.g. number of workstations);
information – data connected with context of production process (discrete production
process with number of workstation), and knowledge – interpretation of data (e.g. for
discrete processes modeling use Petri Nets). The problem is how to organize data,
information and knowledge that agents could easily access them, query and find
appropriate answer, and interpret the answer to the user.

4.2. Knowledge formalization
Importance of knowledge formalization is obvious. Ontology presents the most useful
tool for knowledge formalization.
Basic steps for knowledge representations are as follows:

- generate ontology
- define inferential operations on ontology
- identify query style
- add representations for operations
- add representations for basic claims

Ontology is an organized record of things and events among them.

4.3. Knowledge capture
There are several ways how to capture knowledge. First, the designers of the system in
cooperation with experts from control system designers fill the system with initial
knowledge about control system design. It is similar process to an expert system
creation. For second, the system captures knowledge automatically, while users and
agents provide any action. Such a way the system is evolving during its working
process. Monitoring Agent from BG monitors each action in the system and records it.
New knowledge is captured and stored in the system. The other way, how to capture
knowledge is in cooperation with users. Users are asked to fill some notices and they
are supervised to write as much details as possible about the notice. This is done
through interactive user interface – Personal Agent. Also this knowledge is recorded
and stored in the system.

4.4. Knowledge capitalization
The stored knowledge has to be organized and capitalized for future reuse. Support
system provides advices on the basis of users requirements.

The most important aspects of historical situations are indexing and storing in a
common database. New situations are described by using some basic attributes;
afterwards, the similar, existing situations are identified and extracted from the
knowledge base. Finally, the previous problem solutions are retrieved and the revised
solutions are proposed for the current situation.

The first important requirement for the MASS is to build a database for storing
information from numerous situations and their solutions. The second requirement is
to define a set of rules for classification and extraction of data; and the last one is to
design a method for decision making, so that the agents can identify what is best for
the user in the current situation. CBR systems are learning from experience. New
knowledge is created on the basis of historical solutions and their adaptations. In that
sense knowledge is capitalized in the MASS.

4.5. Reasoning algorithms for extracting information
To find a similar case, the agents search by queries. The question is, how to achieve a
case that is identical or very close to the current one described by the user. Two cases
are identical if all their attributes are the same. Unfortunately the existence of the
identical cases is rather rare. In many instances, the agents can find only a case that is
“very close” to the target one. Exploiting the similarity degree and an inductive

reasoning method can help the agents distinguish situations and choose one of them
that is closest to the new instance.

In this paper, two methods proposed to extract information from the database are
presented. The first method is based on the similarity degree between two arbitrary
situations; the second one is built on the inductive reasoning principle. These methods
are also described in [3].

The first method based on similarity degree, works on the following principle: the
agents calculate the similarity between two arbitrary situations by comparing all their
attributes. Relationships among attributes are evaluated by any number (real or fuzzy)
that reflects how much a solution of one situation is useful for the second one, with
respect to these attributes. The similarity degree is defined by a combination of those
partial relationships.

The second possible method is an inductive reasoning that works as follows: starting
with the most important attribute, the agents sort and filter all cases that have the same
or to a certain degree the same attribute like the target one. This cycle continues with
less important attributes, until only one candidate remains. The last case remained is
considered as the most similar to the target one.

The important requirement of the both methods is the identification of relationships
among attributes. Due to a wide variety of attributes, classifying precisely the
dependences among them is impossible. For that reason, the use of a fuzzy
classification is preferred, because of its capabilities to express a number of difficult
relations among attributes that other classification methods cannot do. For example,
the following relation: “an algorithm for modeling system type A could be applied to
system type B with the same or very good quality”, could be easily expressed by
exploiting fuzzy sets.

Let re(el1, el2): { ELEL× } � [0,1] be a relation expressing the dependence between
two attributes (el1, el2)∈ EL. There are some important properties of this relation.

- re(el1, el2) ≠ re(el2, el1) , resp. ≠ (1 – re(el2, el1)), i.e. this relation is not
symmetric or inverse.

- re(el1, el2) = 1; when the solution proposed for element el2 could be
applicable to element el1 without changes. For example, el1 is a linear system with
complete information; el2 is a linear system with parametrical uncertainty.

- re(el1, el2) = 0 ; when both the elements have disjoint domains of effects, i.e.
the solution proposed for el1 is useless for element el2. For example, el1 is a
discrete event system and el2 is a linear system.

- ∀ el∈ EL; re(∅ , el) = 1 a re(el, ∅) ≥ 0

The similarity degree between two arbitrary situations Sim(,) is defined as follows:

Let us consider two situations si1 and si2 with the same number of attributes.

si1={el1,1, el1,2,…,el1,n } and si2={el2,1, el2,2,…., el2,n }

If the numbers of attributes of each situation are not equal, we can add an empty
attribute ∅ to them. Let us define matrix W∈ [0,1]nxn as follows:

wi,j= re(el1,i, el2,j) (1)

Then,

Sim(si1, si2) = WTQW (2)

where Q={qi,j}nxn is a symmetric and positively definite matrix of the same dimension
(n x n) as W. Each member qi,j of matrix Q expresses a weight of how much a relation
re(el1,i, el2,j) can influence the dependence between both situations. Given a target case
sicurrent the case that maximizes a function Sim(si, sicurrent) is considered as the most
similar one, and its solution could be applied or adapted to solve the current situation.

Inductive reasoning method extracts the desired situation by performing a search of a
decision tree, which involves all possible historical cases satisfying certain conditions.
A decision tree is generated as follows: starting with the most important attribute –
propose it is el1, all cases that satisfy the following condition are added to the decision
tree.

)|,|()(1)(1 currentsisi elelre ≥ α (3)

where coefficient α is a low bound that is used to restrict a set of candidate situations.
The classification process continues with less important attributes, until only one
candidate solution remains.

Conclusions
The paper introduces a multi-agent architecture of a support system for production
systems control design. The detailed description of intelligent agents and their
communication within the system is provided.

The MASS is related to a lot of problems; some of them have already been mentioned
in this paper. In the future, the main interest is to focus on cooperation among agents,
because there are many different kinds of agents situated in that system, developed by
different teams, with different architecture, behavior, and knowledge. The problem
that has to be solved in the nearest future is to find how suggested solutions can be
adapt to user’s requirements.

Acknowledgement
The system has been developing in cooperation with FEI STU Bratislava, FEI TU
Košice, and MEF STU Bratislava, under project APVT-51 011602.

References

[1] Bhanu B and Dong A. (2002): Concepts learning with fuzzy clustering and
relevant feedback. Engineering Application of AI, No. 15, 123-138.

[2] Bergmann R. (1999): Special issue on case-based reasoning. Engineering
Application of AI, No. 12, 661-759.

[3] Dang T.T., Frankovič, Budinská: Case-based reasoning applied for CAS-
decision system, In Proc. Of 2nd IFAC Conference: Control Systems Design,
2003, Bratislava, on CD

[4] Dang T.-Tung, Hluchý L., Budinská I., Nguyen T. G., Laclavík M. Balogh Z.
(2003): Knowledge management and data classification in Pellucid. In
Intelligent Information Processing and Web Mining, Advances in Soft
Computing, Springer-Verlag, 563-568.

[5] Dubois D., Esteva F., Garcia P., Godo L., M`antaras R. L., and Prade H.
(1998): Fuzzy set modelling in case-based reasoning, International Journal of
Intelligent Systems, No. 13, 345–373.

[6] McSherry D. (2002): Recommendation Engineering. ECAI-02, 86-90.

[7] Mille: Proceedings of the Workshop: Adaptation in Case Based Resoning,
A workshop at ECAI 1996, Budapest

[8] Prasad M.V.N, Plaza E.: Corporate Memories as Distributed Case libraries;
http://ksi.cpsc.ucalgary.ca/KAW/KAW96/prasad/cm.html

[9] Ross S., Fang L. and Hipel K. (2002): A case-based reasoning system for
conflict resolution: design and implementation. Engineering Application of AI,
No. 15, 369-383.

[10] Rudas J. (1999): Evolutionary operators; new parametric type operator
families. Int. Journal of Fuzzy Systems, Vol. 23, No. 2, 147-166

[11] Sycara K.: Using CBR for Plan Adaptation and Repair; In Proc. of the DARPA
CBR workshop, 1988, http://online.loyno.edu/cisa494/papers/Sycara.html

[12] Zeng D., Sycara K.: Using Case Based Reasoning as a Reinforcement Learning
Framework for Optimization with Changing Criteria; Proc. of. Seventh
International Conference on Tools with Artificial Intelligence; Virginia USA,
1995; http://csdl.computer.org/comp/proceedings/tai/1995/7312/00/73120056.pdf

