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Abstract: This paper explores the learning fuzzy inference systems implemented as adaptive 
fuzzy-neural networks. The research into application of learning techniques to fuzzy 
inference systems (FIS) has matured into a family of adaptive fuzzy inference systems 
(AFIS). In most cases, the learning FIS and AFIS families can be interpreted as a partially 
connected multilayer feedforward neural network with Gaussian activation function for the 
hidden neurons. The connection can be interpreted in terms of rules. Often, these rules are 
designed a priori implying the connections are a priori fixed, and their strengths can be 
adapted from input and output data. However, the strengths of the rules and membership-
function parameters are adapted in the learning process from an input-output training data 
set, such that the error function is minimized. The latter as well as information granulation 
gave rise to integrity problem which must be observed in applications.  
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1. Introduction 
Since 1965 when L. A Zadeh has put forward the concepts of fuzzy sets and 
systems allowing for degrees of truthfulness mimicking the reality of human 
thinking and of approximate reasoning subsequently (1973, 1975), computational 
(machine) intelligence has evolved as much as to attained both theoretically and 
practically the status of ‘computing with words’ (Zadeh, 1994, 1996). These 
developments of computational intelligence have remarkable evolved into learning 



 

fuzzy-neural or neuro-fuzzy systems (e.g. see Brown and Harris, 1994; 
Cherkassky and Mulier, 1997; Jang et al, 1997; Kosko, 1992; Kruse and Nauk, 
1998), and also led to fuzzy-Petri systems (Pedrycz and Gromide, 1994; 
Dimirovski, 1998). In particular, these have found a number of applications in 
areas of control and decision (e.g. Lin and Lee, 1991; Jang and Sun, 1995) a 
general overall model of   which is illustrated in Figure 1 (Dimirovski and Jing, 
2003).  

 

Fig. 1. Integrated control, decision and supervision in engineering and system-
theoretic terms. 

 

Fuzzy inference systems (Zadeh, 1973, 1975), FIS for short, lie in its very core 
regardless of the theory and the technology of implementation on which systems 
engineering designs are based (Zadeh, 1994). Their subsequent developments has 
led to the advent of adaptive fuzzy inference systems (AFIS) implemented by 
means of fuzzy-neural networks (e.g. see Buckley and Hayashi, 1994, 1995; Jang, 
1993; Keller and Tahini, 1992; Lotfi and Tsoi, 1996).   

In particular, it may well be said that Jang’s creation of ANFIS (1993) has 
generated a new paradigm in fuzzy-neural computation. Its potential towards 
generalized AFIS was further explored in Jang et al. (1997), see Figure 2, which 
gave hints to commence our investigation (Dimirovski and Tanevska, 1999) this 
paper being one of the outcomes.    



 

 
Fig. 2. Schematic of an adaptive fuzzy-neural system 

   

One of the main advantages of AFIS over classical learning systems and neural 
networks is their ability to utilize intuitive knowledge, which may be presented in 
a linguistic form such as employed by humans. The knowledge once stored in the 
membership functions (MFs) and rules of the system, preserving the integrity of 
this knowledge is as desirable as in continuing human learning and let alone in 
industrial applications. This means the engineering intelligent system would be 
able to use the same intuitive understandings, which has been used to create the 
FIS, to interpret its behavior at all times in the future. For it has become clear 
(Watkins, 1996) that this ideal cannot be guaranteed for AFIS designs. Yet the 
purpose of generalized fuzzy-neural inference system models has to exploit 
evolving antecendents (MFs) and consequents (fuzzy rules), and input space 
partitions (Jang et al., 1997).    

In AFIS designs, the MFs of an AFIS may lose the meaning which is initially 
assigned to them if allowed to adapt freely. For instance, they may change their 
relative positions such that "low" may become greater than "high", or the range of 
their activations may become excessively wide or narrow. This has emphasized 
the importance of preserving the physical meaning of MFs albeit until recently no 
close and deeper studies on restrictions to their adaptability during tuning have 
been carried out (Cherkassky, 1998; Jang et al., 1997; Lotfi and Tsoi, 1996; 
Tanevska, 2002).  

Namely, it has been observed that although the adapted MFs may have attained a 
new significance, after the original meaning has been lost, it may be very difficult 
or undesirable to interpret. In some cases, an AFIS may have changed to such a 



 

degree that a conventional linguistic interpretation is no longer possible. In such a 
case, the AFIS may be viewed as a "black box" approximated function similar in 
function to a neural network. All these possibilities make a conventional AFIS 
unsuitable for many control and decision applications in which maintainability and 
reliability are of prime importance, despite their likely superior performance 
relative to ones which may have restricted range of MFs parameter variations.  

The rest of the paper is organized as follows. Next Section 2 indicates how the 
above can be achieved, gives a brief address to information granulation in fuzzy 
variables and rules of the knowledge base, and  an outline of the adequate learning 
algorithm. Section 3 is focused on the use of rough fuzzy sets and the limiting 
bounds of grades of membership functions (MFs) within the learning algorithm 
operation. Conclusion and references follow thereafter.  

2. Granulation of Fuzzy Variables and Fuzzy Rules 
It is a general requirement that the MF assigned to a fuzzy value should not exceed 
certain maximum and minimum limits of fuzziness after adaptation. If the 
similarity between the initial MF and the MF during training is measured, when 
this similarity measure exceeds its limit, the linguistic meaning assigned to the MF 
is said to be lost. In case when a MF becomes too narrow, meaning that it has a 
smaller similarity, it will be totally deleted. Alternatively, two or more MFs can be 
merged into a single MF, when they are very similar. In semantic similarity has 
been used to apply a constraint on the fuzzy values and the fuzzy functional 
dependency (FFD) for relational data bases.  

In order to cope with the above problem, the concept of rough sets has been 
proved useful in constructing constrained training algorithms that maintain the 
integrity of AFIS during training (Brown and Harris; 1994; Cherkassky and 
Mulier, Jang et al, 1997; Tanevska, 2002). This may be viewed as a paradigm that 
enables the adaptive fuzzy controller to adapt itself in manner so as to remain still 
conceptually comprehensible to a human expert.  

In order to achieve proper self-adaptation of fuzzy controllers (with embedded 
AFIS) that still remain conceptually comprehensible to a human expert a tradeoff 
between performance measure cost function is indispensable. The idea is to allow 
for a certain slight degradation of the performance of the AFIS (reflected in value 
level of the cost function) in the sense that the error function may attain a higher 
value than in the case when the MFs are allowed to adapt freely. In most cases in 
control and decision applications, this tradeoff is acceptable because the ability to 
interpret the behavior of the AFIS is more important essentially than to achieve a 
lower minimum in the cost function.  For this purpose the concept of constrained 
training algorithm for AFIS has to be employed, which is directly related to the 
granulation problem of fuzzy variables and fuzzy rules in the knowledge base 



 

(Dimirovski and Tanevska, 1999), which in turn are closely related to linguistic 
modeling (Pedrycz and Vasilakos, 1999). For all these reflect on the training 
algorithms.    

Let us recall that adaptive fuzzy systems can essentially be classified into two 
groups; one having a uniform granulation, and the other having a non-uniform 
granulation of universe of discourse of the inputs and outputs. In the uniform 
granulation AFIS, initially the universe of discourses are divided into uniform 
partitions with linguistic meaning. In non-uniform granulation system, the 
linguistic understandability of fuzzy system is not necessary and only nonlinear 
mapping is of prime concern. The non-uniform granulation can be divided into 
different subclasses, e.g. tree partition, scatter partition.  

Most commonly, for the purpose of control and decision the uniform granulation 
is used. Assuming a certain number of rules with some initial MFs for antecedent 
and consequent of each rule, a gradient descent training algorithm (and others too) 
can be employed. This training algorithm minimizes the output error by tuning the 
membership function parameters. 

In order to clarify the issue of concern that distinguishes these two main groups of 
adaptive fuzzy systems refer to illustration in Figure 3 below. Figure 3-a shows a 
uniform granulation FIS for a two input-one output system which is granulated 
into three individual MFs for the first input, x1, and two individual MFs for the 
second input, x2. A maximum of six rules can be formed to specify the behavior of 
this FIS. In contrast, Figure 3-b depicts a non-uniform granulation FIS with three 
rules and three individual MFs for each input. 

The concept of integrity preservation becomes significant when the granulations 
are uniform, that is, a set of meaningful linguistic rules are available. In fact, often 
this is the starting point in the design of a FIS. On the other hand, it should be 
noted that non-uniform granulation AFIS are most commonly used for clustering 
applications. In this case, the concept of rules is not important, thus the notion of 
integrity after training is not essential. This is because the system does not have 
any specific physical meaning before training in the sense of rules being attached 
to any clusters which might have emerged.  
 

 
 

Fig. 3. The issue of granulation in fuzzy if-then rules 
 



 

In general, the most famous types of AFIS systems can be used with a uniform or 
non-uniform granulation. In present paper, we focus our attention on so-called 
Type II adaptive systems (also see Figure 2) having the following fuzzy if-then 
rules and configuration employed for the modeling of linguistic information: 
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In the present investigations, including the simulation experiments (Tanevska, 
2002), the MFs of the linguistic values, i

jA  are defined by Gaussian functions and 

are given as follows: 
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where i
jσ  and i

jρ  are unknown constant parameters. It is these parameters that 

can be adjusted on-line by making use of a gradient descent algorithm. The 
decision, )(ˆ ky  at thk  instant, as a function of inputs )(kx j  is obtained from 

following equation: 
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The updating of the parameters in the AFIS can be implemented in two ways: 
partial updating and full updating. Partial updating involves changing only the 
parameters of the consequent part of rules, while keeping the parameters in the 
antecedent part constant: and full updating implies changing all parameters in both 
the antecedent and consequent parts of the fuzzy if-then rules. Full updating 
allows the system more freedom in adapting to the circumstances and 
subsequently results in a better performance for AFIS. 

Wang (1997) has carried out wide ranging studies on the theoretical aspects of 
adaptive fuzzy controllers with partial updating.  For example: partial update for 
nonlinear function approximation is employed in the analysis of the taste of rice. 
Usually an adaptive fuzzy system with uniform granulation of inputs is 
considered. The parameters in the antecedent and the consequent premises are 
defined as [ ]ii

j
i
jij B,, ρσ=Θ . To update  ijΘ  we can use a steepest descent 

gradient method to minimize the cost function J. The value ijΔΘ  at the thk )1( +  

instant as a function of the ijΔΘ  at the thk  instant is obtained as follows: 

)()1( kJk ijijij ΔΘ+∇−=+ΔΘ αη        (5) 

where ijJ∇,,αη  are the learning rate , momentum and the gradient of the 

parameters. The proposed constrained tuning method is carried out for N epochs. 
The parameters will be updated after each iteration using the following update rule 

)()1()()1( ijijijij xkkk Θℜ+ΔΘ+Θ=+Θ .     (6) 

A restriction function, ℜ , specifies the constraint on the updating of the 
parameters. Then the integrity of MFs are not substantial, meaning that there is no 
constraint on the parameters, the restriction function 1=ℜ . When 1=ℜ , there 
is no limitation on MF parameters and they can be adapted freely. If we apply the 
restriction on the MF parameters, for each parameter i

j
i
j ρσ , , a dedicated 

restriction function  i
j

i
j ρσ
ℜℜ ,  ought to be employed. Its choice is not unique 

but depends on the application domain (discussed in next section). When partial 
updating is used, i.e. the parameters of MFs in the antecedent are fixed and only 
the parameters of consequent are adaptable, restriction function becomes equal to 
one.  

3. On Limits of Membership Function Grades and 
Concept of Rough Fuzzy Sets 



 

In addition, let consider the class of typical MFs of Gaussian form given in 
equation (2). This is specified by two parameters: ρσ ,  and universe of discourse 

],[ +− XX . The grade of MF can be given a linguistic label in a specific 
universe. For example, it can be defined with the linguistic label, "medium". If 
absolute maximum and minimum levels are defined, then the membership of the 
fuzzy label is limited to those bounds. These bounds can be hard or soft, as 
defined in the following subsections. It is to be noted that these limit bounds are 
widely applicable and not solely for the bell shaped Gaussian MFs. In principle, 
limit bounds can be introduced for any form of MFs, e.g. triangular, sigmoid, etc., 
to ensure these remain within certain bound (hard or soft) specified by an 
application domain expert. 

3.1. Hard Limit of Membership Functions 
Consider the MF given in equation (2) with two generic parameters: ρσ ,  rep-
resenting the mean and the spread of Gaussian bell shape. To preserve the 
linguistic label assigned to this shape, the parameters of the Gaussian function are 
allowed to move only within a. certain limit. To be specific: ρρρ ≤≤  where 

ρρ and   are respectively the lower and upper bounds in which the linguistic 

variable can move without destroying the interpretation of the "variable”. In a 
similar manner, we have σσσ ≤≤ where σσ and the lower and tipper 
bounds ofσ  are respectively. 

These restrictions can be applied to the MF tuning algorithm. The restriction 
function, ρσ ℜℜ ,  are shown in figure (2-a) and governed by the following set of 

equations: 
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Thus, if σσσ ≤≤ i.e. σ  lies within the permissible range, then 1=ℜσ . On 

the other hand, if  σσ ≤  then  0=ℜσ ; if σσ >  again 0=ℜσ . Hence, 

regardless of whether or not a minimum solution for the cost function J  is 



 

achieved or not, the hard bounds do not permit the MF parameters to move beyond 
the defined limits. It preserves the integrity at the possible expense of yielding a 
less optimal solution. The soft limit, which is proposed in the following 
subsection, is expected to give a better performance. 

3.2. Soft Limit of Membership Functions 
By using a soft limit bound, we can allow the MF parameters to be updated with a 
varying degree of scaling. As the parameters approach their predefined maximum 
and minimum limits, smaller and smaller updates are performed. 

The hard bounds introduced in the previous section can be replaced by a soft 
bound of the following form: 
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where ρσ vandv   are respectively the dispersion parameters of ρσ and .   

These are introduced so that a “gentle roll off” be achieved (Figure 3 b) instead of 
a hard limit occurring at the boundary (Figure 3 a). The above restricting functions 
for the purpose of obtaining 10 percent distortion around the boundary values, 

ςσ 045.0=v  and ρρ 045.0=v , are depicted in Figure 3-b. 
 

 
 

Fig. 3. Limit bounds of membership function parameters 

This methodology allows certain penetration of the parameter values beyond their 
hard limits. However, by controlling the parameter ν  the extent of the penetration 
can be adjusted, hence a certain adaptation as most appropriate.  

 



 

4. Conclusion 
The integrity of AFISs can indeed be preserved by using a constrained training 
algorithm. For this purpose both hard and soft limit bounds for the parameters 
should be employed. It should be noted, however, a certain tradeoff has to be 
carefully reached. At design stage, care has to taken about the needed tradeoff 
between obtaining the minimum of the performance measuring cost function, and 
the preservation of the integrity in the sense of the interpretability of the 
converged AFIS.  

Should reaching the minimum of the cost function be the primary goal, then it may 
well be observed that the MFs can be radically altered from their initial definition. 
This in turn may render the converged AFIS uninterruptible.  Should preservation 
of the integrity of the AFIS, after the adaptation process has converged, be of 
primary importance, then it may well be found that the cost function can only be 
attained at a higher value. In this case, the MFs retain their original meaning and 
can be interpreted properly.  

In the case of function approximation for wider range of applications, the AFIS 
without any constraints may achieve a slightly better fit to the input-output data, 
than the one with constraints. However, the one with constraints provides MFs 
which can be interpreted, while the one without constraint may not allow this.  

The way in which the constraints have been introduced in this discussion is only 
one among a many potential possibilities. The one discussed in here has been 
found rather appropriate for control and decision applications where the integrity 
is of primary importance. Should it be desirable or necessary to preserve the 
integrity of AFIS, the techniques presented in here can be applied directly. 
Ultimately, in AFIS designs, the choice of using an AFIS without or with 
constraints remains application domain and purpose dependent. Hence the main 
systems engineering reasons in each particular design must be observed.   
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