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Abstract: The paper describes a proposition of sliding mode trajectory tracking in
joint space of manipulator using generalized velocity component (GVC) vector. Iner-
tial quasi-velocities called GVC were presented by Loduha and Ravani [5]. Their in-
troduction leads to first-order decoupling equations of motion instead of one second-
-order equation. There are shown some differences between classical sliding mode
control according to Slotine and Li [7] and proposition expressed in terms of GVC.
Both controls were tested on 3 d.o.f., 3 − D Yasukawa-like robot.
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1 Introduction
The problem of trajectory control is concerned with the case when manipulator ought
to follow a desired trajectory. The second-order nonlinear differential equations of
motion are traditionally used in robotics literature [6, 8, 9]. They involve general-
ized position vector and velocity vector which represent a joint space of manipulator.
For tracking purposes the joint space trajectory the nonlinear control law called in-
verse dynamics control is often proposed [6, 9]. The system under this control is
linear and decoupled with respect of the new assumed input. However Slotine and
Li introduced [7] so called sliding mode approach for adaptive control of robot ma-
nipulators. The idea of this method relies on exploitation the structure of Lagrangian
formulation for rigid manipulators without linearization its dynamic equations. Their



conception, widely described in [8], is also actual in a case of no parameters uncer-
tainty. Both methods, inverse dynamics control and sliding mode control, are used
for tracking of desired, and time dependent trajectory.

For the purpose of control decoupled first-order equations of motion seem more
convenient. Dynamics in terms of these equations was described e.g. by Loduha
and Ravani [5]. Based on Kane’s equations the authors have presented first-order
decoupled equations with diagonal mass matrix. Diagonalization of this matrix is
realized in velocity space. As a result the obtained diagonal mass matrix N(θ) is
congruent to the matrix M(θ).

The objective of this paper is a presentation of sliding mode control in terms of
generalized velocity components (GVC) vector introduced in [5] and giving some
suggestions relating to it.

The rest of the paper is organized as follows. The second Section gives diago-
nalized equations of motion in terms of GVC. In the third Section the sliding mode
control in joint space of manipulator is described. Also some remarks regarding this
control are contained there. Simulation results comparing classical controller and the
proposed here for 3 d.o.f., 3 − D Yasukawa-like robot are presented in the fourth
Section. The last section contains conclusions.

2 Dynamics in terms of GVC
Recall that the classical equations of motion are written in the following form [7, 8]:

M(θ)θ̈ + C(θ, θ̇)θ̇ + G(θ) = τ, (1)

where N - number of degrees of freedom,
θ, θ̇, θ̈ ∈ RN - vectors of generalized positions, velocities, and accelerations, respec-
tively,
M(θ) ∈ RN×N - system mass matrix,
C(θ, θ̇) ∈ RN - vector of Coriolis and centrifugal forces in standard equations of
motion,
G(θ) ∈ RN - vector of gravitational forces in standard (classical) equations of mo-
tion,
τ ∈ RN - vector of generalized forces.
Assuming that there exist some positive constant βm, βM , βc, βg, and vector x the
following properties can be established [1, 6, 8] (I denotes the identity matrix):
(P1). The inertia matrix M(θ) satisfies the inequality βmI ≤ M(θ) ≤ βM I
∀θ ∈ RN .
(P2). Matrix C(θ, θ̇) satisfies C(θ, θ̇) ≤ βc||θ̇||, ∀θ̇ ∈ RN .
(P3). One can define skew symmetric matrix
xT [ 12Ṁ(θ) − C(θ, θ̇)]x = 0, ∀x ∈ RN .



(P4). It can be shown that Ṁ(θ) = CT (θ, θ̇) + C(θ, θ̇).
(P5). The gravity vector G(θ) is bounded as ||G(θ)|| ≤ βg , ∀θ ∈ RN .

The method described by Loduha and Ravani is based on searching a congruence
matrix to mass matrix of the system (compare for details [5]). The obtained first order
equations of motion are modified Kane’s equations.

For robot manipulator one can write two first order equations: diagonalized equa-
tion of motion and velocity transformation equation, respectively:

Nu̇ + C(θ, u)u = π (2)
θ̇ = Υu (3)

where matrices and vectors are given as follows (Υ̇ denotes time derivative of Υ):

N = ΥT M(θ)Υ (4)
C(θ, u) = ΥT [M(θ)Υ̇ + C(θ, θ̇)Υ] (5)
π = ΥT (τ − G(θ)). (6)

In equations (2)-(6) N is a diagonal matrix congruent to mass matrix of manipulator
M(θ) (this matrix can be obtained using method described in [5]), u, u̇ are vectors
of generalized velocity components and their time derivatives, respectively, C(θ, u)
is a new Coriolis force vector and π is a vector of quasi-forces. The invertible matrix
Υ [5] transforms joint velocities into generalized velocity components space.

Remark 1. The mass matrix Υ arises from decomposition of matrix M(θ) there-
fore (P1) guarantee boundedness of matrix N . From (P2)-(P4) one can conclude
that also C(θ, u) is bounded (matrix Υ̇ results from Ṁ(θ)). Also vector ΥT G(θ) is
bounded because of property (P1) and (P5).

Referring to modified Kane’s equations [5] one can write for a manipulator (the
appropriate equivalence was shown in [3]): M(θ) =

∑N

k=1[mkJT
k Jk + ΩT

k IkΩk],
C(θ, θ̇ =

∑N

k=1[(mkJT
k J̇k + ΩT

k IkΩ̇k)θ̇ + ΩT
k WkIkωk],

G(θ) = −
∑N

k=1 JT
k fk, τ =

∑N

k=1 ΩT
k τRk

where mk is the mass of k-th body,
Jk is the partial derivative of k-th body’s mass center position with respect to the
inertial reference frame,
Ωk is the partial derivative of body k-th angular velocity with respect to the time
derivative of the generalized coordinates vector,
Ik is the central inertia matrix,
Wk is the angular velocity matrix associated with the i-th body, and written in terms
of body k-th natural frame,
ωk is the angular velocity of k-th body,
fk is the resultant active force acting at the mass center of the k-th body,
τRk is the k-th resultant moment.



Remark 2. Very important result arising from Eqs.(3) and (4) is that kinetic
energy of the manipulator is expressed as:

K(θ, u) =
1

2
θ̇T M(θ)θ̇ =

1

2
uT ΥT M(θ)Υu =

1

2
uT Nu. (7)

This result denotes that for N linked bodies K(θ, u) = 1
2

∑N

k=1 Nku2
k. Therefore

one can consider each inertial quasi-velocity uk separately in a sense of the kinetic
energy. It is because a part of the kinetic energy of each link concerning internal
connections is transferred into uk inertial quasi-velocity.

Remark 3. Because the matrix Υ is invertible, from Eq.(3) arises that u = Υ−1θ̇.
Each of components of vector u can be written as uk =

∑N

i=1 Υ−1
ki θ̇i. The presence

of coefficients Υ−1
ki and joint velocities θ̇i 6= θ̇k is a consequence of couplings among

manipulator links. Calculating the Euclidean norm of vector uk one can conclude
that under condition ||uk|| > ||θ̇k|| a control which uses this vector may guarantee
its faster convergence than using only θ̇k. Recall also because of the inequality (for
Euclidean norm) ||Υ−1θ̇|| ≤ ||Υ−1|| ||θ̇|| the similar condition for the entire vector
u is expressed as ||Υ−1|| > 1.

3 Sliding mode control in joint space using GVC
Firstly recall sliding mode control in joint space of a manipulator according to [6, 8]
for classical description this control in joints space is as follows:

τ = M(θ)θ̈r + C(θ, θ̇)θ̇r + G(θ) + kDs. (8)

The used symbols denote: θ̈r = θ̈d + Λ ˙̃θ, θ̇r = θ̇d + Λθ̃ with θ̈d as desired joint
acceleration vector and θ̃ = θd − θ, ˙̃

θ = θ̇d − θ̇ the joint velocity error, and joint
error between the desired and actual posture, respectively. Matrix Λ is constant and
has eigenvalues strictly in the right-half complex plane and kD is a constant positive
definite control gain matrix. The vector s is defined as s =

˙̃
θ + Λθ̃.

Consider now the problem of sliding mode control in terms of GVC. Because
matrix Υ is invertible hence for reference trajectory one can write ur = Υ−1θ̇r.
Calculating time derivative of θ̇r = Υur one can obtain θ̈r = Υ̇ur +Υu̇r and hence
u̇r = Υ−1(θ̈r − Υ̇ur).
Remark 4. Assumed reference trajectory remembers the case of Cartesian space
control [7] (instead of manipulator Jacobian matrix we use transformation matrix
Υ−1). But the main difference lies on introduction of sliding surface which involves
both kinematic and dynamic parameters of the manipulator. Sliding surface in terms
of u can be defined as follows:

su = ur − u = Υ−1(
˙̃
θ + Λθ̃). (9)



The above sliding surface is similar as for Cartesian space control [7].
PROPOSITION. The control in terms of GVC described as

π = Nu̇r + C(θ, u)ur + kDsu (10)

where kD is a positive definite control gain matrix enables achieving sliding surface
in terms of GVC.
Input moment of manipulator (which arises from (6)) is given as τ = Υ−T π +G(θ).

Proof of (10). The closed loop system with control (10) using su is given as
follows:

Nu̇ + C(θ, u)u = Nu̇r + C(θ, u)ur + kDsu (11)

what leads to equation (ṡu = u̇r − u̇):

Nṡu + [C(θ, u) + kD]su = 0. (12)

Now as a Lyapunov function candidate consider the following expression (which
contains the same quantities as in [8] but decomposed in different way):

L =
1

2
sT

u Nsu. (13)

The time derivative of N equals (by M = M(θ)):

Ṅ =
d

dt
(ΥT MΥ) = Υ̇T MΥ + ΥT ṀΥ + ΥT MΥ̇. (14)

Next we calculate the time derivative of the function (13) using equations (2)-(6),
Eqs.(12), (14), and property (P3). After transposition of (3) one can obtain (L̇ =
dL
dt

):

L̇ = sT
u Nṡu +

1

2
sT

u Ṅsu = sT
u [−C(θ, u)su − kDsu +

1

2
Ṅsu] =

= sT
u [−ΥT MΥ̇su − ΥT C(θ, θ̇)Υsu − kDsu +

1

2
(Υ̇T MΥ + ΥT ṀΥ

+ΥT MΥ̇)su] = −sT
u kDsu + sT

u [
1

2
ΥT MΥ̇ − ΥT MΥ̇ +

1

2
Υ̇T MΥ

+ΥT (
1

2
Ṁ − C(θ, θ̇))Υ]su = −sT

u kDsu +
1

2
sT

u (Υ̇T MΥ− ΥT MΥ̇)su =

= −sT
u kDsu ≤ 0. (15)

Notice that L̇ ≡ 0 only if su ≡ 0. From expression (15) one can conclude that the
output error converges to the sliding surface

su = Υ−1(
˙̃
θ + Λθ̃) = 0. (16)



In order to show that su → 0 as t → ∞ it is sufficient to show that L̇ → 0 as t → ∞.
Since L is positive, Barbalat’s Lemma [8] indicates that L̇ does tend to zero if it is
uniformly continuous, and if L̈ is bounded. Calculating the second time derivative
of L from (15) one can obtain L̈ = −2sT

u kD ṡu. Since L ≥ 0 and L̇ ≤ 0, then
L remains bounded. From expression (13) implies that su is bounded. Besides the
diagonal matrix N is positive, bounded and invertible (it arises from decomposition
of mass matrix M ). Similarly matrix Υ−1 is bounded and invertible. The closed-
loop dynamics (12) shows that also ṡu is bounded (matrix N is positive definite and
its inversion is bounded). Thus, su → 0 as t → ∞ and therefore both θ̃ and ˜̇

θ tend
to zero as t → ∞.

Remark 5. The difference between controls (8) and (10) relies on various energy
shaping. Both su and ur contain matrix Υ−1 which express couplings among each of
k-th link and others. If the condition ||Υ−1|| > 1 given in Remark 3 is fulfilled, one
can expect that the control (10) faster reduces kinetic energy than using controller
(8). It results from the fact that kD(GV C) = (Υ−1)T kD(CL)Υ

−1.

4 Simulation results
In this section simulation results concerning sliding mode control of robot manipu-
lator are presented. The first aim is to point at some differences between two propo-
sitions expressed in terms of GVC. The second goal is to show some performances
obtained from noninteracting controllers if the equations of motion are given in terms
of GVC. As the example 3−D Yasukawa-like manipulator was considered. We have
used dynamical equations given in [4] and set of manipulator parameters from [2]:
* link masses: m1 = 6.04kg, m2 = 17.4kg, m3 = 35kg;
* link inertias: Jxx1 = 0.317kgm2, Jxx2 = 0.14kgm2, Jxx3 = 0.862kgm2,
Jxy1 = 0kgm2, Jxy2 = 0.007kgm2, Jxy3 = 0.002kgm2, Jxz1 = 0,
Jxz2 = −0.019kgm2, Jxz3 = 0.001kgm2, Jyy1 = 0.0169kgm2,
Jyy2 = 0.609kgm2, Jyy3 = 0.002kgm2, Jyz1 = −0.012kgm2,
Jyz2 = −0.0017kgm2, Jyz3 = 0.002kgm2, Jzz1 = 0.266kgm2,
Jzz2 = 0.626kgm2, Jzz3 = 0.35kgm2;
* distance: axis of rotation - mass center:
px2 = 0.068m, py1 = 0.143m, py2 = 0.006m, py3 = 0.3078m, pz1 = 0.014m;
* length of link: l1 = 0.4318m;
* angle α : α1 = α3 = 0deg, α2 = −90deg.
The kinematic scheme is shown in Figure 1.

For tracking we have chosen the fifth-order polynomial trajectory described as
follows: initial points θi1 = 1/3 ∗ π[rad], θi2 = π[rad], θi3 = −1/2 ∗ π[rad], and
final points θf1 = −2/3 ∗ π[rad], θf2 = 0[rad], θf3 = 1/2 ∗ π[rad], with time
duration tf = 1[s]. Maximal value of joint velocity is |θ̇kmax| = 5.89[rad/s] for



Figure 1: Kinematic scheme of Yasukawa-like manipulator.

each link, and maximal acceleration |θ̈kmax| = 18.14[rad/s2], k = 1, 2, 3. Starting
points were different from initial points ∆ = +0.2, +0.2, +0.2, respectively. All
simulations (realized in MATLAB/SIMULINK environment) were performed using
the fourth-order Runge-Kutta formula with fixed step size 0.005[s]. We assumed
control coefficients (the same for both controllers):

kD(1, 2, 3) = 9, 9, 9, Λ(1, 2, 3) = 12, 12, 12. (17)

Profiles of trajectories and joint velocities are given in Figure 2(a). Figures 2(b)
and 2(c) show joint position errors for all joints and for GVC and classical (CL)
controllers, respectively. One can notice that GVC controller gives slightly bigger
error for the first and the second joint. But after some time using this controller all
errors tends to zero faster than using CL one. Figure 2(d) confirms this fact because
the error norm (in logarithmic scale) has after about 1[s] distinctly smaller values for
GVC controller than for CL one. Similar conclusion arises from Figure 3(a) which
compares joint velocity error norms for both controllers (also in logarithmic scale).
In Figure 3(b) joint moments obtained using GVC controller are presented (for CL
controller they were very close). Figure 3(c) gives realized GVC velocities u for all
joints. They differ themselves which implies that they are decoupled. Besides u1
had bigger values than the appropriate joint velocity. Next, in Figure 3(d) elements
of matrix N are shown. They represents some inertias along axes arising from the
presence of other links of manipulator. Figure 4(a) gives Euclidean norm ||Υ−1||
of the matrix Υ−1 obtained from GVC controller. This norm has all time value
bigger than 1 what leads to a conclusion that the performances for GVC controller
are better than CL one. In Figure 4(b) phase curves obtained from GVC and CL
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Figure 2: Simulation results: a) profiles of trajectories and joint velocities, b) joint position errors e for
GVC controller; c) joint position errors e for classical (CL) controller; d) comparison of joint position

error norms ||e|| (in logarithmic scale) for both controllers.
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Figure 3: Simulation results: a) comparison of joint velocity error norms ||ev|| (in logarithmic scale) for
both controllers (GVC and CL), b) joint moments tau obtained using GVC controller; c) quasi-velocities

u for GVC controller; d) elements of matrix N obtained from GVC controller.
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Figure 4: Simulation results: a) Euclidean norm of transformation matrix Υ−1 for GVC controller, b)
phase curves obtained from CL controller (joint velocity v - dashed line) and for GVC controller (quasi-
-velocity u - solid line) for all joints; c) kinetic energy in all joints and for the entire manipulator (GVC
controller); d) comparison of kinetic energy (in logarithmic scale) for both classical (KECL), and GVC

(KEGV C ) controllers, respectively.



controllers are presented. Main difference results from quasi-velocity u1 and joint
velocity v1. Other quasi-velocities are very close the appropriate joint velocities
in both cases. However one can conclude that elements of vector u which contain
couplings among manipulator links have bigger values than joint velocities. This fact
implies faster errors convergence using GVC. Figure 4(c) compares kinetic energy
for the entire manipulator K and for all joints. At 0.5[s] dominant is energy for
the first joint (K1). It is related to u1 in Figure 3(c). Comparing in Figure 4(d)
kinetic energy for manipulator one can see that after duration time (1[s]) this energy
is reduced faster using GVC controller than using classical controller.

5 Conclusions
In this work some proposition of sliding mode control in terms of the inertial gen-
eralized velocity components (GVC) was presented. Based on Barbalat’s Lemma
convergence of the tracking error was proved. Performances of sliding mode con-
troller in terms of GVC and classical controller, for 3 − D 3 d.o.f. manipulator,
were compared too. It was confirmed that using sliding mode controller in terms of
GVC the kinetic energy if shaped in different way than using classical controller. It
was stated also that after duration time GVC controllers gives better performances.
Additionally information about dynamical influence of links during the motion of
the manipulator is also available (on the basis of knowledge of matrix N or kinetic
energy in each joint).

Dynamic equations of motion for serial manipulator are decoupled in the sense
that the obtained mass matrix is diagonal. From the kinetic energy expressed using
vector u arises that its introduction leads also to decoupling of manipulator links in
the kinetic energy sense. It is because each ’decoupled link’ (i.e. a link which con-
tains also couplings among the k-th link and others) has independent kinetic energy
expressed as ( 1

2Nku2
k). Mass of such ’decoupled link’ is described by means of k-th

element of the matrix N . However one should take into consideration that for some
manipulators the initial moments values are quite big. It results from the fact that
GVC include both dynamical and kinematical parameters of the system.
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