
Classification of Multivar iate Data  
Using Distr ibution Mapping Exponent 

Marcel Ji
�
ina 

Institute of Computer Science AS CR 

Pod vodárenskou v� ží 2, 182 07 Praha 8 – Libe�  

Czech Republic 

marcel@cs.cas.cz 

Abstract: We introduce distribution-mapping exponent that is something like effective 
dimensionality of multidimensional space. The method for classification of multivariate 
data is proposed. It is based on local estimate of distribution mapping exponent q for each 
point x.  Distances of all points of a given class of the training set from a given (unknown) 
point x are searched and it is shown that the sum of reciprocals of q-th power of these 
distances can be used as the probability density estimate. The classification quality was 
tested and compared with other methods using multivariate data from UCI Machine 
Learning Repository. The method has no tuning parameters. 
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1 Introduction 

Classification of multivariate data is a problem solved by lot of methods from 
nearest neighbor method to decission trees, neural networks and genetic 
algorithms. The problem is generally difficult because of several influences, e.g. 

• High problem dimensionality where curse of dimensionality causes 
excessive grow of processing time. 

• Presence of noise; true data are rarely “pure” . 

• Multicollinearity, i.e. mutual dependence of individual variables. If 
variables are originally considered independent, i.e. orthogonal to all others, 
multicollinearity causes distortion of the space; coordinates are not 
orthogonal already. 

• Boundary effect. Due to this effect nearest points seem to be rather far and 
farther points near so that the distance between the nearest and the farthest 



point of finite data set can be smaller than the distance of the nearest 
neighbor from the given point.  

In this paper we deal with distances in multidimensional space and try to simplify 
a complex picture of probability distribution of points in this space introducing 
mapping functions of one variable. This variable is the distance from the given 
point (the query point x [3]) in multidimensional space. From it follows that 
mapping functions are different for different query points and this is cost we pay 
for simplification from n variables in n-dimensional space to one variable. We will 
show that this cost is not too high – at least in application presented here. 

The distance is basic notion for all approaches dealing with neighbors, especially 
nearest neighbors. There is a lot of methods of classification based on the nearest 
neighbors [1]. They estimate the probability density at point x (a query point [3]) 
of the data space by ratio i/Vi of number i of points of a given class in a suitable 
ball of volume Vi with center at point x [5]. These methods need to optimize the 
best size of the neighborhood, i.e. the number i of points in the neighborhood of 
the point x or size of volume Vi. The probability density in the feature (data) space 
is given by training data. The optimal neighborhood size depends on the training 
data set, i.e. on the character of data as well as on the number of samples of a 
given class in the training set. Often it is recommended to choose neighborhood 
size equal to the square root of number of samples of the training set [5]. 

The method proposed is based on distances of the training set samples xs, 
s = 1, 2, … k from point x. It is shown that the sum of reciprocals of q-th power of 
these distances, where q is a suitable number, is convergent and can be used as a 
probability density estimate. From the fact of high power of distances in 
multidimensional Euclidean space, fast convergence, i.e. small influence of distant 
samples, follows. The speed of convergence is the better the higher dimensionality 
and the larger q.  

The method reminds Parzen window approach [4], [5] but the problem with direct 
application of this approach is that the step size does not satisfy a necessary 
convergency condition. 

Using distances, i.e. a simple transformation from n-dimensional Euclidean space 
En to one-dimensional Euclidean space E1, and no iterations, the curse of 
dimensionality is straightforwardly eliminated. The method can be also considered 
as a variant of the kernel method, based on a probability density estimator but 
using a much simpler metric and does not satisfy some mathematical conditions.  

Throughout this paper let us assume that we deal with normalized data, i.e. the 
individual coordinates of the samples of the learning set are normalized to zero 
mean and unit variance and the same normalization constants (empirical mean and 
empirical variance) are applied to all other (testing and of unknown class) data. 
This transformation does not mean any change in form of the distribution, i.e. 



uniform distribution remains uniform,  exponential distribution remains 
exponential (with �  = 1 and shifted by 1 to the left), etc. 

2 Probability Distr ibution mapping function 

Let a query point x be placed without loss of generality in the origin. Let us build 
balls with their centers in point x and with volumes Vi  , i =1, 2, ...  

Individual balls are one in another, the (i-1)-st inside the i-th like peels of onion.  
Then the mean density of points in the i-th ball is � i = mi/Vi. The volume of a ball 
of radius r in n-dimensional space is V(r) = const.rn. Thus we have constructed a 
mapping between the mean density � i  in the i-th ball � i and its radius ri. Then 

� i = f(ri). Using tight analogy between density � (z) and probability density p(z) one 
can write p(ri) = f(ri) and p(ri) is the mean probability density in the i-th ball with 
radius ri here. This way a complex picture of probability distribution of points in 
the neighborhood of a query point x is simplified to a function of a scalar variable. 
We call this function a probability distribution mapping function D(x, r), where x 
is a query point, and r the distance from it. More exact definitions follow. 

Definition 

Probability distribution mapping function D(x, r) of the neighborhood of the query 
point x is function �=

),(

)(),(
rxB

dzzprxD , where r is distance from the query point 

and B(x, r) is ball with center x and radius r. 

Definition 

Distribution density mapping function d(x, r) of the neighborhood of the query 

point x is function ),(),( rxD
r

rxd
∂
∂= , where D(x, r) is a probability distribution 

mapping function of the query point x and radius r. 

Note. It is seen that for fixed x the function D(x, r), r > 0 is monotonically 
growing from zero to one. Functions D(x, r) and d(x, r) for x fixed are one-
dimensional analogs to the probability distribution function and the probability 
density functions, respectively. For illustration see Fig. 1. 
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Fig. 1. Data in a multidimensional space and corresponding probability 
distribution mapping function and distribution density mapping function. 

Power  approximation of the probability distr ibution mapping 
function 

Let us approximate the probability distribution mapping function by parabolic 
function in form D(x, rn) = const.(rn)�  . This function is tangent to the vertical axis 
in point (0, 0) and let it is going through some characteristic points of the 
distribution. 

Definition 

Power approximation of the probability distribution mapping function D(x, rn) is 

function rq such that const
r

rxD
q

n

→),(   for +→ 0r  . The exponent q is a 

distribution-mapping exponent. The variable �  = q/n we call distribution mapping 
ratio. 

Note. We often omit a multiplicative constant of the probability distribution 
mapping function. 

Using approximation of the probability distribution mapping function by 
D(x, rn) = const.(rn)�   the distribution mapping exponent is q = n� .  

Note that distribution-mapping exponent is influenced by two factors 

• True distribution of points of the learning set in En. 

• Boundary effects, which have the larger influence the larger dimension n and 
the smaller the learning set size [1], [5]. 



To overcome the problem of estimation of q using real data, this exponent is 
estimated by linear regression for each query point as shown in the next Chapter. 

3 Distr ibution mapping exponent estimation 

Let the learning set U of total mT samples be given in the form of a matrix XT with 
mT rows and n columns. Each sample corresponds to one row of XT and, at the 
same time, corresponds to a point in n-dimensional Euclidean space En, where n is 
the sample space dimension. The learning set consists of points (rows) of two 
classes c ∈ {0, 1} , i.e. each row (point or sample) corresponds to one class. Then, 
the learning set U = U0∪U1 , U0∩U1 =∅ , Uc = { xcs} , s = 1, 2, … Nc, c = {0, 1} . Nc  
is the number of samples of class c, N0 + N1 = mT , and  xcs={  xcs1, xcs2,… xcsn}  is 
the data sample of class c. 

We use normalized data, i.e. each variable xcsj (j fixed, s = 1, 2, ... mT, c = 0 or 1 
corresponds to the j-th column of matrix XT) has zero mean and unit variance.  

Let point x ∉ U be given and let points xcs of one class be sorted so that index i = 1 
corresponds to the nearest neighbor, index i = 2 to the second nearest neighbor, 
etc. In the Euclidean metrics, ri  = ||x, xci || is the distance of the i-th nearest 
neighbor of class c from point x. 

From definition of the distribution mapping exponent it follows that q
ir shoud be 

proportional to index i, i.e. 

kir q
i = ,   i = 1, 2, ... Nc,   c = 0 or 1,                                       (1) 

and where k is a suitable constant. Using logarithm we get 

)ln()ln( ikrq i +′= ,   i = 1, 2, ... Nc .                                     (2) 

System of these Nc equations with respect to unknown q can be solved using 
standard linear regression for both classes. Thus we get two values of q,  q0 and q1. 
To get a single value of q we use the weighted arithmetic mean, q = (q0N0 + q1N1)/ 
(N0 + N1) . 

At this point we can say that q is something like effective dimensionality of the 
data space including true distribution of points of both classes and boundary 
effect. In the next chapter we use it directly instead of dimension. 



4 All learning samples approach 
Let us define                                              
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where C is a constant. We show below that )(xpc
 is probability density estimate. 

Note that (3) reminds Parzen window approach [4], [5 Chap. 4.3] with weighting 

function qyyK −=)(  for qry 1>  and K(y) = 0 otherwise, q ∈ <1, n> and with 

window width h = 1. The problem with direct application of this approach here is 
that h does not satisfy the necessary condition  0)(lim =∞→ ihi

  [4, eq.(1.8)] . 

On the one hand due to (1) the series in (3) should be a harmonic series that is 
divergent. On the other hand we will prove below that it is not true. The series 

q
ir1 converges with size of ri for q > 1 and thus we have no reason to limit 

ourselves to the nearest k points and we can use all points in the learning set using 
k = Nc, c = 0 or 1. At the same time the ordering of individual components is not 
essential and we need not sort the samples of XT with respect to their ri when using 
the nearest neighbor approach. (But we need to sort them when estimating 
distribution mapping exponent q.) 

In practical procedure for each query point x we first compute the distribution 
mapping exponent q using (2) by standard linear regression. After it, we simply 
sum up all components q

ir1 and, at the same time, we store the largest component 

which corresponds to the nearest neighbor of point x which has the smallest q
ir . In 

the end we subtract it thus excluding the nearest point. This is made for both 
classes simultaneously getting numbers S0 and S1 for both classes. Their ratio 
gives a value of the discriminant function, here the Bayes ratio.  We can get also 
probability estimation that the point x∈En  is of class 1:  

0
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Then for a threshold (cut) θ chosen, if θ>)(xR  or θ>)(1 xp  then x belongs to 

class 1 else to class 0.  

The method is very close to the nearest neighbor as well as kernel methods. From 
the point of view of kernel methods, the kernel is or would be q

ixxxK −−= ||||)(  

with Euclidean norm ||.|| in En. There is no smoothing (bandwidth) parameter. The 
problem is that this kernel is difficult to consider as a probability distribution 
function according to the definition of a kernel [1]. Taking  ||x-xi|| = r we have 

qrrK −=)(  and integrals �
∞

∞−
drrK )(  or �

∞

0
)( drrK  are not convergent; they should 

be equal to 1 or at least finite. 



5 Probability Density Estimation 

Let us look at the problem what is the relation of part Di of space En which falls on 
i nearest neighbors of the given point x. We will assume the following: 

Assumption 1: Let there be points in the Euclidean space En distributed uniformly 
in the sense that the distribution of each of the n coordinates is uniform. Let i be 
the order number of the i-th nearest neighbor to the point x. Let ri be the distance 
of the i-th nearest neighbor of the given point  x ∈ En from point xi. Let D  be a 
constant, q ∈ (1, n) be a constant, and iD  be the mean value of the variable q

ir , 

and let it hold 

                                           iDDi =  .  

Comment: Under Assumption 1 by “ the part Di of the space En“   we do not mean a 
volume of a ball with the center in the point x and radius ri but, in fact (except for 
a multiplicative constant), a ball of the same center and radius but in the space of 
dimension given by constant q, i.e. in the Eq. The basis for introducing 
Assumption 1 is finding as follows. By simulation one can find that the relation 

iVVi =  where V is a constant does not hold but for some q 
�

 n it holds 

iDrD q
ii ==  where i is the number of the i-th nearest neighbor of point x∈En and 

D is a constant. From it follows that the q-th power grows linearly.  

Theorem 1 

 Let Assumption 1 be valid, and let i∆  be mean of q
i

q
ii rr 1−−=∆ , iD  be mean of 

q
ii rD = , iV  be mean of n

ii crV =  where c is a constant. Moreover let exist 

a constant K such that 
ii Kp ∆=∆ )( . Then for the probability density 

iViKip /)( ′=  of points in the neighborhood of point x it holds 

)()()( ipDpp ii ==∆ , where 
i

i D

iK
Dp =)( .  

Proof: The p(i) is probability density and at the same time due to Assumption 1 

iD1 is proportional to p(i). Then there is a constant K that )()( ipDp i = . Under 

Assumption 1 there is Di =∆  and then )()()( ipDpp ii ==∆ . �  

6 The Proof of Convergence 

Theorem 1 states that probability density is propotional to q
ir/1  and formula (3) 

uses the sum of these ratios supposing to get a reasonable number for probability 



density estimation. So it is supposed that for a number of samples going to 
infinity, the sum would be convergent.  

Theorem 2 

Let exist a mapping of probability density of points of class c in En, En → E1: 
)()( q

cici rpxp =  so that  
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where K is a fixed constant that has the same value for both classes. Let exist a 
constant ε > 0 and index k >2 so that for each i> k it holds  
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where K and Cc are finite constants.  

Proof: First we arrange (6) in form 
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For individual elements 
cjc pp /2

 in denominators of fractions in the sum it holds 
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Using condition (5) the summed elements Pk, Pk+1, … in (7) since the k-th have 
form 
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Then according to d’Alembert’s criterion               
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0>∀i and 0>∀ε . Then the series is convergent. �  

Notes: 

     a) In the statement of the theorem the sum need not start just by index i = 2. 
We can start with the nearest neighbor (i = 1) or other neighbors (i > 2). The value 
i = 2 is given by a compromise between the error caused by the small value and 
the large variability of 

11 cc r=∆ , and the inaccuracy caused by the larger distance 

from point x for i > 2, see Chap. 3. 

     b) The last condition (5) defines the speed of diminishing the tail of the 
distribution; probably condition that the distribution should have the mean would 
suffice. 

7 Discussion 

From formula (7) it is seen that for a “smooth“  form of the distribution function 
around point x and for the large density of points for both classes, the ratios 

cic pp 2
are very close to 1 for rather large values of  i (e.g. 100, but let us take 11 

here). For both classes the elements of sum in (7) are 
11

1
...,

3

1
,

2

1  and their 

sum is 2.01987 here, and the other elements have form 
)1)(11(11

1
δ+−+ i

, where 

starting from the index k it is δ ≥ ε. (Index k can be different for both classes.) It is 
then probable that the values of sums in (7) will be very close for both classes and 
the ratio of (7) for one and the other class will be close to Bayes ratio 

012021 )()( SSxpxp cc = . In such a case we can also estimate the probability that the 

sample x belongs among signals: 

01
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211 )()(
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Using neighbor distances for the probability density estimation, the probability 
density estimation should copy the features of the probability density function 
based on real data. The idea of most nearest-neighbors-based methods as well as 
kernel methods [1] does not reflect the boundary effects. That means that for any 
point x, the statistical distribution of the data points xi surrounding it is supposed 
to be independent of the location of the neighbor points and their distances xi from 
point x. This assumption is often not met, especially for small data sets and for 



higher dimensions. To illustrate this, let us consider uniformly distributed points 
in a cube (-0.5, + 0.5)n. Let there be a ball with its center in the origin and the 
radius equal to 0.5. This ball occupies 3

3
4 5.0.π  = 0.524, i.e. more than 52 % of that 

cube in a three-dimensional space, 0.080746, i.e. 8 % of unit cube in 6-
dimensional space, 0.0026 in 10-dimensional space, and 3.28e-21 in 40-
dimensional space. It is then seen that starting by some dimension n, say 5 or 6 
and some index i, the i-th nearest neighbor does not lie in such a ball around point 
x but somewhere “ in the corner”  in that cube but outside this ball (the boundary 
effect [6]). From it follows that this i-th neighbor lies farther from point x as 
would follow from the uniformity of distribution. In farther places from the origin 
the space thus seems to be less dense than near the origin. The function 

n
irif =)( , where ir is the mean distance of the i-th neighbor from point x, 

should grow linearly with index i in the case of uniform distribution without the 
boundary effect mentioned. In the other case this function grows faster than 
linearly.  

The samples of the learning set are normalized to zero mean and unit variance for 
each variable as introduced in the beginning. Assume that all thus arising marginal 
distributions are approximately normal. Our point x has an unknown class and also 
unknown probabilities p1(x) and p0(x) and lies just in the point (0, 0, … 0). For 
point x we can introduce different neighborhoods, for our estimations let us use 
three only: 

A. Till the distance of one sigma in all dimensions, 

B. From the distance of one sigma to the distance of two sigmas in all 
dimensions, 

C. From the distance of two sigmas to infinity in each dimension.  

     There is assumption of normality of all variables. Then in each dimension, 
approximately 68 % points of the learning set lie inside A, 95 % points lie inside 
A and B, i.e. 27 % in B, and 5 % in C. To these three “ layers”  also some mean 
distances (0.5, 1.5, and 3) correspond in all dimensions.  

The total portion (percentage) of points in layer A are given by n68.0 , in A and B 
together by n95.0 , and in C by what remains to 1. 

For computation of sum in (3) all points from layers A, B, and C are used. Each 
point in these three layeres benefit to the total sum (3) by its part. Benefits to the 
total sum by points in the individual layer are given by the relative number of 
points in a layer (total points in layer) divided by average distance (which is the 
average distance in one dimension times the square root of the dimension) to the 
(n-1)-st power recomputed to 100 %. E.g. for layer A and n = 2 there is 
BA = 0.4224 . 1/(0.5√2)2 = 0.653932, BB =  0.4401 . 1/(1.5√2)2 =  0.207465,  



and BC = 0.0975 . 1/(3√2)2 = 0.022981. These numbers divided by sum BA + BB + 
BC  give 73.94 %, 23.46 %, 2.60 %, respectively. For n = 5 the distribution of 
points in layers A, B, C are 14.54%, 62.84%, and 22.62%, respectively, and 
corresponding benefits are in the same ordering 94.83%, 5.06%, and 0.11%. 
Similarly for n = 20 we get numbers 0.044687%, 35.80%, 64.15% for distribution 
of points, and  99.999931%, 0.000069%, 2.35588E-12 for corresponding benefits 
of points in layers A, B, and C. 

These estimations show that due to the geometry of the multidimensional 
Euclidean space the share of points corresponding to A with respect to the total 
number of points lessens essentially with dimension. At the same time, their 
benefit to the total sum is close to 100 %. This is because parts A, B, C are, in fact, 
not cubes but n-dimensional balls of radii computed from an average distance in 
one dimension. It also follows that the share of the layer C to the total sum is 
negligible for the dimension 5 or 6 and more. With the dimension growing also 
the convergence of the sum is much faster as the points of the learning set near 
point x gave practically the whole value of the sum. The larger dimension the 
lesser percentage of points from the learning set influence the result. On the other 
hand, for low dimensionality, especially 2 and 3 even the farthest points have 
strong influence. 



Table 1. Comparison of classification error of SFSloc7 for different tasks with 
results for another classifiers as given by [7]. Notes – see the next page. 

“ German”    “ Hear t”    
Algorithm Error Note Algorithm Error Note 
SFSloc7    0.520 1; 2 SFSLoc7        0.357 3 
Discrim 0.535  Bayes  0.374  
LogDisc 0.538  Discrim  0.393  
Castle 0.583  LogDisc  0.396  
Alloc80 0.584  Alloc80 0.407  
Dipol92 0.599  QuaDisc  0.422  
Smart 0.601  Castle  0.441  
Cal 0.603  Cal5  0.444  
Cart 0.613  Cart  0.452  
QuaDisc 0.619  Cascade  0.467  
KNN 0.694  KNN  0.478  
Default 0.700  Smart  0.478  
Bayes 0.703  Dipol92 0.507  
IndCart 0.761  Itrule 0.515  
BackProp 0.772  BayTree 0.526  
BayTree 0.778  Default 0.560  
Cn2 0.856  BackProp  0.574  
Ac2 0.878  LVQ 0.600  
Itrule 0.879  IndCart  0.630  
NewId 0.925  Kohonen 0.693  
LVQ 0.963  Ac2  0.744  
Radial 0.971  Cn2  0.767  
C4.5 0.985  Radial  0.781  
Kohonen 1.160  C4.5  0.781  
Cascade 100.0  NewId  0.844  
      
“ Adult”    “ Ionosphere”    
Algorithm Error Note Algorithm Error Note 
FSS Naive Bayes 0.1405  IB3   0.0330 6; 7 
NBTree  0.1410  backprop  0.0400 8 
C4.5-auto    0.1446  SFSloc7 0.0596 9 
IDTM Dec. table 0.1446  Ross Quinlan's C4 0.0600 10 
HOODG  0.1482  nearest neighbor  0.0790  
C4.5 rules 0.1494  "non-linear" perceptr. 0.0800  
OC1 0.1504  "linear" perceptron  0.0930  
C4.5                     0.1554     
Voted ID3 (0.6)  0.1564     
CN2  0.1600     
Naive-Bayes 0.1612     
Voted ID3 (0.8)  0.1647     
T2   0.1684     
SFSloc7         0.1786 4    
1R   0.1954     
Nearest-neighbor  1 0.2035        
Nearest-neighbor  2 0.2142     
Pebls Crashed 5    



Notes to Table 1: 
1 for threshold 0.413 
2 numeric data 
3 for threshold 0.24 
4 for threshold   0.868482 

                   5                 Unknown why (bounds WERE increased) 
                   6                 parameter settings: 70% and 80% for acceptance  

                   and dropping respectively 
7 (Aha & Kibler, IJCAI-1989) 
8 an average of over .. 
9 for threshold 0.550254 

10 no windowing 

8 Results - testing the classification ability 

The classification algorithm was written in c++ as SFSloc7 program and tested 
using tasks from UCI Machine Learning Repository [7]. Tasks of classification 
into two classes for which data about previous tests are known were selected: 
“Adult” , “German”, “Heart” , and “ Ionosphere” .  

The task “Adult”  is to determine whether a person makes over 50000 $ a year. 

The task “German” is about whether the client is good or bad to lend him money. 

The task “Heart”  indicates absence or presence of heart disease for patient. 

For he task “ Ionosphere”  the targets were free electrons in the ionosphere. "Good" 
radar returns are those showing evidence of some type of structure in the 
ionosphere. "Bad" returns are those that do not; their signals pass through the 
ionosphere. 

We do not describe these tasks in detail here as all can be found in [7]. For each 
task the same approach to testing and evaluation was used as described in [7].  In 
Table 1 results are shown together with results for other methods as given in [7]. 
For each task methods are sorted according to classification error, the method with 
the best – lowest error first. It is seen that for some tasks SFSloc7 is good but there 
are tasks where the method is worse than average – it would be strange to 
outperform all methods for all tasks. The method is totally parameterless. There is 
no parameter for tuning to get the best result. The method simply works 
satisfactorily or not, there is nothing to try more. 

 

Conclusions 

In this paper we dealt with simplified representation of probability distribution of 
points in multidimensional Euclidean space including boundary effects. A new 



method for classification was developed. The method is based on notion of 
distribution mapping exponent and its local estimate q for each query point x. The 
theorem on convergence was formulated and proved and a convergence estimation 
was shown. It was found that the higher dimensionality, the better.  

The method has no tuning parameters: No neighborhood size, no convergence 
coefficients etc. need to be set up in advance to assure convergence. There is no 
true learning phase. In the „ learning phase“ only normalization constants are 
computed and thus this phase is several orders of magnitude faster than the 
learning phase of neural networks or many other methods [2], [7]. In the recall 
phase for each sample to be classified the learning set is searched twice, once for 
finding the local value of the distribution mapping exponent q, and second for all 
samples of the learning set elements of sum (3) are computed. The amount of 
computation is thus proportional to the learning set size, i.e. the dimensionality 
times the number of the learning samples. 
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