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Abstract: Based on a real problem connected with the landing of aeroplanes we 
investigate a special queueing system where special conditions prevail. In these 
systems, called Lakatos-type queueing systems, the service of a client may start 
upon arrival or at times differing from it by multiples of cycle-time T . In this 
paper we investigate a system which serves two different types of customers. First-
type customers can be serviced only when the system is free, wheras second-type 
customers may join a queue in the case of a busy server. Customers form Poisson-
processes, and their service time distributions can be either exponential or 
uniform. Service discipline is FIFO (FCFS). We calculate the generating functions 
of transition probabilities and determine equilibrium distribution of the 
corresponding Markov-chain, and give conditions of ergodicity for each case. 
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1 Introduction 

Systems where customers arrive, wait for service, then leave after getting serviced 
often occur in real life. The wide range of possible applications explains the 
important role of queueing theory in the description of several everyday processes. 

A new class of queueing systems was considered by Falin in [1]. This class of 
queues are characterized by the following feature: if a customer arrives when all 
potential servers are busy, it leaves the service area, but repeats its request after 
some random time until it gets serviced. This feature appears in many computer 
and commuication networks problems. 

In his works Lakatos has extensively investigated such type of retrial systems, 
where the service of a request can be started upon arrival (in case of a free system) 
or at times differing from it by multiples of the cycle time T  (in the case of a busy 



server). This happens at aeroports, where aeroplanes can start landing on arrival if 
the runway is free. Otherwise they have to start a circular manoeuvre, and can put 
another request for landing if they have reached the starting point of the trajectory. 
In contrast with Falin’s retrial queues, here the FIFO (FCFS) rule is used, because 
of possible fuel shortage. 

In [2] Lakatos considered a system with Poisson-arrivals and exponentially 
distributed service time; whereas in [3] service time distribution is uniform. Koba 
found sufficient condition of ergodicity for a more general case, which she 
published in [4]. As a generalisation, Lakatos examined a special system which 
serves customers of two different types in [5]. In the system only one customer of 
first type can be present, it can only be accepted for service in the case of a free 
server, whereas in all other cases the requests of such customers are turned down. 
There is no such a restriction on customers of second type; they are serviced 
immediately or join a queue in case of a busy server. Both types of customers 
form Poisson processes, i.e. interarrival times are independent, identically 
(exponentially) distributed. Service time distributions are exponential, and also 
independent. In [6] we investigated the same system, but service time distributions 
were uniform, and and in [7] we also included numerical results by simulation. 
Numerical investigation was also carried out in [8] with the same type of system, 
but service-time distribution is discrete (geometric). In [9] classical and Lakatos-
type systems are compared. 

In this paper we are going to consider the same system but the service time of 
customers is either exponentially or uniformly distributed. We summerize results 
of former papers and give results when service time distributions are of different 
type. 

2 Description of the system 

In conventional queuing systems the service process runs continuously; after 
having completed the service of a customer, we immediately take the next one. In 
retrial systems, this is not so. Therefore, to elaborate the mathematical description 
of the system we make the following assumptions. In the system there might be 
idle periods, when the service of a request is completed, but the next one has not 
reached its starting position. We consider these periods as part of the service time, 
making the service process continuous in such way. We also make a restriction on 
the boundaries of the intervals of the uniform distribution: they are multiples of 
the cycle-time. This assumption does not violate the generality of the theory, but 
without it formulae are much more complicated. 

For the description of the system we are going to use the embedded Markov-chain 
technique. Let us consider the number of customers in the system at moments just 



before the service of a new customer begins. In other words, if kt  denotes the 
moment when the service of the k -th entity starts, we consider the sequence, 
whose states correspond to the number of customers at 0−kt , and is denoted by 

kξ . For the sake of definiteness, at 0=t  let the system be free. It is not difficult 
to see that the sequence of random varibales { }1, ≥ξ kk  defined this way forms a 
Markov-chain. This is a consequence of three facts: service times are independent, 
interarrival times are independent and exponentially distributed. 

For this chain we introduce the following transition probabilities: 

 jia  — the probability of appearance of i  customers of second type at the 
service of a j -th type customer ( )2,1=j  if at the beginning there is only one 
customer in the system; 

 ib  — the probability of appearance of i  customers of second type at the 
service of a second-type customer, if at the beginning of service there are at 
least two customers in the system; 

 ic  — the probability of appearance of i  customers of second type after free 
state.  

As the process runs, the busy period can start with a customer of either type. 
During the service of this customer only second-type customers are accepted for 
service, they join the queue, and requests of first-type customers are refused. This 
explains the need for introducing ic , which will be determined with the help of 

jia , depending on the type of customer being serviced. If there are no other 
requests present, when the service of the next customer (which is obviously 
second-type) begins, the system turns into state 1, and probabilities of turning into 
other states from this one are given by ia2 . Probabilities of all other transitions are 

ib . 

The generating functions of these transition probabilities are respectively: 
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3 Results 

Let us consider a queuing system with two types of customers forming Poisson-
processes with parameters 1λ  and 2λ . First type customers are accepted for 
service only if the system is free, in all other cases their requests for service are 



rejected. However, there is no such a restriction on customers of second type, if 
the server is busy they join a queue. The service of this type may start upon arrival 
or at moments differing from it by multiples of the cycle-time T . We define a 
Markov-chain, whose states correspond to the number of customers in the system 
just before starting a service.  Service time distributions of customers of either 
type may be exponential with parameter jμ  or uniform in the interval [ ]jj βα ,  

( jα  and jβ  are multiples of T ), thus we are going to consider four cases 

( )2,1=j . 

 

Theorem 1 

The matrix of transition probabilities of the defined Markov-chain has the form 
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The elements of the matrix are determined by their generating functions below. 
The type of service time distribution is indicated in the upper index: { }( )zA j

uniexp,  
indicates the type of service time distribution of j -th-type customers, and 

{ }( )zB uniexp,  indicates the type of service time distribution of second-type 
customers. 

 ( )
( ) ( )

( )( ) ,
1

1
1

1

2

2

20

exp
2

2

Tz

TTz

i

i
jij

e
eez

zazA
μ−−λ

μ−−λ∞

= −

−
μ+λ

λ
+

μ+λ
μ

==∑  (2) 

 

( ) ( )
( ) ( )

( ) ( ) ,
11

1

1
11

1
2

2

11

20

uni

22

222

2

222

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

λ
−

−

−
α−βλ

−
+

+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−
−

α−βλ
−

==

−λ−λ−

λ−β−λα−λ

λ−

λ−βλ−αλ−∞

=
∑

TzTz

Tzz

Tz

T

i

i
jij

e
T

e
eeez

e
ezeezazA

 (3) 

 
( )

( )

( )( )

( )
( ) ( )( )

( )( ) ,
1
1

1
1

2

21
1

1

21

2

2

2

0

exp

2

2

2

2

2

2

Tz

Tz

T

Tz

T

Tz

i

i
i

e
e

e
e

z

ze
ezbzB

μ−−λ

μ−−λ

λ−

−λ

λ−

−λ∞

=

−

−
⋅

−

−
⋅

μ+−λ
λ

−

−
−−

−
==∑

 (4) 



 

( )
( ) ( )

( )( )( )( )
( ) ( ) ( )

( )
( ) ( )

,
22

1

11
12

2
2

3212

1

11

0

uni

22222

22

22

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

+
−λ

+−−
×

×
−α−β−

−
==

−λ−λ−λ−λ−λ

λ−−λ

β−λα−λ∞

=
∑

z
eeT

z
eee

ee
eezbzB

TzTzTzTzTz

TTz

zz

i

i
i

 (5) 

 ( ) ( ) ( ).2
21

2
1

21

1

0

zAzAzczC
i

i
i λ+λ

λ
+

λ+λ
λ

==∑
∞

=

 (6) 

Outlines of proof. 

Because of earlier explanations the matrix of transition probabilities is 
straightforward. However, we underline that probabilities ia1  do not appear in it 
explicitly, as customers of first type can only be accepted when the system is free.  
These probabilities are represented through probabilities ic . 

For the discription of the system we use the embedded Markov-chain technique, 
i.e. we consider the number of customers in the system just before the service of a 
new customer begins.  This actually means the number of second-type customers, 
as first type customers are refused when the server is busy. We find the transition 
probabilities of this chain. 

We have to consider two cases, whether there are customers waiting or not. First 
we consider the case when only one customer of j -th type is present in the 
system. Let u  denote the service time of this customer and v  denote the time 
elapsed between the beginning of its service and the appearance of a new one. In 
order to be able to determine how many new requests appear in the meantime, we 
have to determine the distribution of the remaining time. We calculate the 
probability ( )tvuP <−<0 . If ( )uF2  denotes the distribution function of the 
service time of second-type customers, 

 ( ) ( ) .dd0
0

22
2∫ ∫

∞ +
λ−λ=<−<

tv

v

v vuFetvuP  

Using this we are able to determine the probability of t  falling between two 
multiples of T . The period between the entry of the second request till the 
beginning of its service is ⎡ ⎤TT

vu− , where ⎡ ⎤x  denotes the ‘upper’ integral part of 
x  (the least integer which is not less than x ). Considering that 

( )∫
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0
20 d2 xFe x  is the probability that no other requests appear during the 

service of the present customer, the generating functions of transition probabilities 
jia  are: 
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Expanding sums we get (2) and (3). The busy period can start with a customer of 
j -th type with probability 

21 λ+λ
λ j , this explains (6). 

Now we are going to determine the transition probabilities of all other states. In 
this case, at the instant when the service of the first request begins, the second one 
is already present, too. Let ⎣ ⎦Tux T

u−=  and y  mean the deviation of interarrival 
times Tmod . It can easily be seen that y  has truncated exponential distribution 

with distribution function T

y
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Let us divide the service time into intervals of length T  and fix y . Each such 
interval is divided into two parts by y  (the first part has length y , the second part 

yT − ). The probabilities of appearance of k  requests during the investigated 

period are ( ) c
k

c t
k
t e 22
!

λ−λ . Let ⎣ ⎦ iT
u = , and ξ  be a random variable denoting the 

number of requests appearing during the investigated period.. The generating 
function of the number of requests entering the system provided that the Tmod  
interarrival time equals y  is 
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Multiplying this expression by T
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λ  and integrating with respect to y  from 0 to 

T , we finally obtain the generating function (4) and (5) of transition probabilities 
ib . 

 



Theorem 2 

The generating function of ergodic distribution of this chain is: 
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where 0p  and 1p  are the first two probabilities of the ergodic distribution. They 

are connected with the relation 0
1
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0 pp a
c−= , where 0p  is determined by the 

condition ( ) 11 =P , and equals: 
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ck −=  establishes connection between the two types of customers. 

Outlines of proof. 

The matrix of transition probabilities has the form (1). With the help of this we 
can determine the probabilities of ergodic distribution denoted by lp . They 
satisfy the equations 

 
( )

,

,1

201000

210

1

2
1

apcpp

lapcpbpp ll

l

k
klkl

+=

≥++=∑
+

=
+−  

from which we receive the following expression for the generating function 
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which yields (7).  

From the second equation for lp , 0
1
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0 pp a
c−=  To determine 0p  we use the 

condition ( ) 11 =P . From this we get (8), where 
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ck −=  is a constant factor 

between the first two probabilities of the ergodic distribution. 

 

Theorem 3 

The condition of existence of ergodic distribution is the fulfilment of the following 
inequalities. 



If the service time of second-type customers is exponentially distributed 
(regardless of the distribution of service time of first-type customers): 
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If the service time of second-type customers is uniformly distributed (regardless of 
the distribution of service time of first-type customers): 
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Outlines of proof. 

Calculating the derivatives of generating functions, and substituting in (8), using 
the McLaurin-series of Te 2λ , it can be shown that ( ) ( ) ( )( )111 2 BAkC ′−′+′  is 
positive. Hence, the condition of ergodicity 10 0 << p  simplifies into 

( ) 011 >′− B , which gives (9) and (10). 

 

The influence of idle periods — while the system is waiting for the next entity to 
reach its starting position to be able to start its service — becomes less and less 
while 0→T . At this limit transition, the conditions of ergodicity (9) and (10) 
tend to the classical conditions 1

2

2 <μ
λ  and ( ) 12

222 <β+αλ . 
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