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Abstract: The environment adaptation ability of the behaviour-based control structures – 
the intelligent adaptation of the system to the current situation, by discrete switching to the 
most appropriate strategy, or by fusing the strategies appeared to be the most appropriate 
ones – can be easily extended to other adaptive applications by reinterpreting the sense of 
the “environment”. In case when the system to be controlled acts as the “environment”, the 
structure can form a fault tolerant control. If the actual user acts as the “environment”, the 
structure can form a user adaptive system. For introducing a flexible platform and some 
application areas, a fuzzy behaviour-based control structure, and highlights of its 
application in vehicle control, fault tolerant control and user adaptive systems will be 
briefly discussed in the followings. 
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1 Introduction 

In behaviour-based control systems (a good overview can be found in [3]), the 
actual behaviour of the system is formed as one of the existing behaviours (which 
fits best the actual situation), or a kind of fusion of the known behaviours 
appeared to be the most appropriate to handle the actual situation. This structure 
has two main tasks. The first is a decision, which behaviour is needed in an actual 
situation, and the levels of their necessities in case of behaviour fusion. The 
second is the way of the behaviour fusion. The first task can be viewed as an 
actual system state approximation, where the actual system state is the set of the 
necessities of the known behaviours needed for handling the actual situation. The 
second is the fusion of the known behaviours based on these necessities. The 
applicability of the behaviour-based control structures is based on the premise, 
that all the situations could possibly occur can be handled by a behaviour formed 
as a convex combination of the known (existing) behaviours. This case having the 
relevant behaviours (control strategies in case of control application, or user 
models in case of user adaptive systems) the behaviour-based control structure has 



the chance to form a suitable actual behaviour (control strategy or emotional 
model). In the followings, first a flexible fuzzy behaviour-based control platform 
and then some of its possible application areas in vehicle control, fault tolerant 
control and user adaptive systems will be briefly introduced in this paper. 

2 The Applied Behaviour-based Structure 

The first task of the behaviour-based control is to determine the necessities of the 
known behaviours needed for handling the actual situation. In the behaviour-based 
control structure applied in the examples of this paper, for this task the finite state 
fuzzy automaton [4] is adapted (Fig.1.). This solution is based on the heuristic, 
that the necessities of the known behaviours for handling a given situation can be 
approximated by their suitability. And the suitability of a given behaviour in an 
actual situation can be approximated by the similarity of the situation and the 
prerequisites of the behaviour. (Where the prerequisites of the behaviour is the 
description of the situations where the behaviour is valid (suitable itself)). This 
case instead of determining the necessities of the known behaviours, the 
similarities of the actual situation to the prerequisites of all the known behaviours 
can be approximated. 
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Fig. 1. The applied behaviour-based control structure 

Thus the first step of the system state approximation is determining the similarities 
of the actual situation to the prerequisites of all the known behaviours – applying 
the terminology of fault classification, it is the symptom evaluation (see e.g. 



Fig.1.). The task of symptom evaluation is basically a series of similarity checking 
between an actual symptom (observations of the actual situation) and a series of 
known symptoms (the prerequisites – symptom patterns – of the known 
behaviours). These symptom patterns are characterising the systems states where 
the corresponding behaviours are valid. Based on these patterns, the evaluation of 
the actual symptom is done by calculating the similarity values of the actual 
symptom (representing the actual situation) to all the known symptoms patterns 
(the prerequisites of the known behaviours). There are many methods exist for 
fuzzy logic symptom evaluation. For example we can adopt fuzzy classification 
methods e.g. the Fuzzy c-Means fuzzy clustering algorithm [1], where the known 
symptoms patterns are the cluster centres, and the similarities of the actual 
symptom to them can be fetched from the fuzzy partition matrix. On the other 
hand, having a simple situation, the fuzzy logic symptom evaluation could be a 
fuzzy rule based reasoning system itself. One of the main difficulties of the system 
state approximation is the fact, that most cases the symptoms of the prerequisites 
of the known behaviours are strongly dependent on the actual behaviour of the 
system. Each behaviour has its own symptom structure. In other words for the 
proper system state approximation, the approximated system state is needed itself. 
One attempt at solving this difficulty is the adaptation of fuzzy automaton. This 
case the state vector of the automaton is the approximated system state, and the 
state-transitions are driven by fuzzy reasoning (Fuzzy state transition rulebase on 
Fig.1.), as a decision based on the previous actual state (the previous iteration step 
of the approximation) and the results of the symptom evaluation. The basic 
structure of the rulebase applied for the state-transitions of the fuzzy automaton 
(rules for interpolative fuzzy reasoning) for the ith state Si (RAi) can be the 
following: 

If Si=One And Si-Si=One  Then Si=One      (1) 
If Si=One And Si-Sk=One  Then Si=Zero 
If Sk=One And Sk-Si=One  Then Si=One 
If Sk=One And Sk-Si=Zero Then Si=Zero 
where Si-Sk is the conclusion of the symptom evaluation about the state-
transition from state i to k, [ ]N,1k∈∀ , N is the number of known behaviours (state 
variables). The structure of the state-transition rules is similar for all the state 
variables. Zero and One are linguistic labels of fuzzy sets (linguistic terms) 
representing high and low similarity. The interpretations of the Zero and One 
fuzzy sets can be different in each Si, Si-Sk universes. The reason for the 
interpolative manner of fuzzy reasoning is the incompleteness of state-transition 
rulebase [2]. In case of having a simple situation, where fuzzy logic rule based 
symptom evaluation can be applied, the fuzzy symptom evaluation (rulebase) 
could be integrated to the state transition rulebase of the fuzzy automaton (as it 
was done in the first example application of this paper). The conclusion of the 
system state approximation (the approximated state itself) is a set of similarity 
values, the level of similarities of the actual situation and the prerequisites of the 



known behaviours. Applying these similarities as the level of necessities for fusing 
the known behaviours, the actual behaviour can be formed. In case of fuzzy 
behaviour fusion, the following rulebase can be used for the fusion of the 
conclusions of the different behaviours: 

If S1=One And S2=Zero And...And SN=Zero Then y=y1  (2) 
If S1=Zero And S2=One And...And SN=Zero Then y=y2 
 ... 
If S1=Zero And S2=Zero And...And SN=One Then y=yN 
where Si is the ith state variable, yi is the conclusion of the ith behaviour and y is 
the fused conclusion. Zero and One are linguistic labels of fuzzy sets (linguistic 
terms) representing high and low similarity. The interpretations of these fuzzy sets 
can be different in each Si universes. Instead of fuzzy reasoning a kind of 
weighted average, (where the weights are functions of the corresponding 
similarities) is also applicable (even it is not so flexible in some cases). E.g.: 
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where ii Sw =  is the weight of the ith behaviour. 

3 Application Examples 

For introducing some of the possible application areas of the proposed fuzzy 
behaviour-based control structure, a vehicle control, a fault tolerant control 
application and a user adaptive emotion-based selection system are shortly 
introduced in the followings. 

3.1 Vehicle Navigation Control Example 

The first application example is a simulated steering control of an automated 
guided vehicle (AGV) [6], [7]. In the example application the steering control has 
two main goals, the path tracking (to follow a guide path) and the collision 
avoidance. The simulated AGV is first trying to follow a guide path, and in the 
case if it is impossible (because of the obstacles) leave it, and as the collision 
situation is avoided try to find the guide path and follow it again. A simulated path 
sensing system senses the position of the guide path by special sensors (guide 
zone) tuned for the guide path. The goal of the path tracking strategy is to follow 
the guide path by the guide zone with minimal path tracking error on the whole 
path (see Fig.2.). 



 
Fig. 2. Differential steered AGV with guide zone,  

δ is the path tracking error, ev is the distance of the guide path and the guide point,  
Pv is the guide point, K is the driving centre, RL, RR, RM are the distances measured by 

the left, right and middle ultrasonic sensors (UL, UR, UM). 

In the collision avoidance strategies, two different collision situations, the frontal 
and the side collision are distinguished. Having the preconditions of motionless 
obstacles, it is sufficient to have three ultrasonic distance sensors (on the front of 
the AGV, one in the middle (UM) and one-one on both sides (UL, UR) (see Fig.2.)) 
to approximate both the collision conditions [7]. Having the preconditions of 
motionless obstacles, the obstacle distance measurements of the near past can be 
used for scanning the boundaries of the obstacles. Collecting the previous 
measurements of the left and right obstacle sensors and the corresponding 
positions of the AGV (measured by the motion sensors on the wheels), the 
boundaries of the obstacles can be approximated [7]. The first stage of building 
the behaviour-based control structure is to build the component behaviours. The 
simplest way of defining these strategies is based on describing the operator’s 
control actions. These control actions could form a fuzzy rule base. In the example 
– using interpolative fuzzy reasoning for direct fuzzy control – constructing the 
fuzzy rule base is very simple. It is not necessary to build a complete fuzzy rule 
base; it is enough to concentrate on the main control actions, by simply adding 
rules piece by piece. Having the simulated model of the controlled system, the 
performance of the controller can be checked after each step. (See more detailed in 
[7].) In the example, there are four different known behaviours: 

Path tracking and restricted collision avoidance strategy: The main goal of this 
strategy is the path tracking (to follow a guide path) and as a sub goal, a kind of 
restricted (limited) collision avoidance [7]. (Here the restricted collision avoidance 
means, “avoiding obstacles without risking the chance of loosing the guide path”.) 
The base idea of the path tracking strategy is very simple: keep the driving centre 
of the AGV as close as it is possible to the guide path, than if the driving centre is 
close enough to the guide path, simply turn the AGV into the new direction. 
Adding the collision avoidance, this simple strategy needs seven observations: 
Two for the path tracking, the distance between the guide path and the driving 



centre (ev), and the distance between the guide path and the guide point (δ). Five 
for the collision avoidance, the distances measured by the left middle and right 
ultrasonic sensors (RL, RM, RR) and the approximated maximal left and right 
turning angle without side collision (αML, αMR). Based on these observations two 
conclusions, the speed (Va) and the steering (Vd) are calculated (see Fig.2. and [7] 
for more details). 

The collision avoidance strategy: The second known behaviour is a simple 
collision avoidance steering strategy. Its only goal is to avoid collisions. 

The collision avoidance with left/right tendency strategy: The next two behaviours 
are basically the same as the collision avoidance steering strategy, except the left 
or right turning tendencies in case of no left or right turning difficulties. These 
strategies are needed to aid finding the path after leaving it (because of the fail of 
the first strategy). Their rulebases are the same as the rulebases of the collision 
avoidance strategies, except one additional rule, which causes the left/right turning 
tendencies in collision free situations. 

The example application is so simple, that it does not need separate symptom 
evaluation. The function of the symptom evaluation is built to the state-transition 
rulebase of the fuzzy automaton. Having four known behaviours, the automaton 
has four state variables. These are the approximated level of similarity of the 
actual system to the prerequisites of the path tracking and restricted collision 
avoidance strategy (SP), to the prerequisites of the collision avoidance strategy 
(SC), to the prerequisites of the collision avoidance strategy with right tendency 
(SCR), and left tendency (SCL). Having four conclusions, four state transition 
rulebases is needed. The RSP state transition rulebase is determining the next value 
of the SP state variable, RSC is for determining SC, RSCR for SCR, and RSCL for SCL. 
The observations of the state transition rulebases are the observations introduced 
in the path tracking and partial collision avoidance strategy, the state variables 
themselves (SP,SC,SCR,SCL), and a new observation (PV), signing if the path 
sensing is available. The state-transition rulebases for interpolative fuzzy 
reasoning are the following: 
RSP:  
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
    Z V   L   L 
    PL V     S Z 
    NL V    S  Z 
     NV      Z 

RSC: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
     V   S   L 
     V   L   Z 
     NV      Z 



RSCR: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
L    NVL V      L 
  L   NV      L 
    Z V   L   Z 
   L        Z 

RSCL: 
SP SC SCR SCL ev PV RL RR RM αML αMR SP 
L    PVL V      L 
   L  NV      L 
    Z V   L   Z 
  L         Z 

where N: negative, P: positive, VL: very large, L: large, S: small, Z: zero, V: path 
valid, NV: path not valid. 

Conclusions of the example: Fig.3. introduces some results of the simulated 
application. The results shows, that in the tested situation the suggested fuzzy 
behaviour-based control structure was able fuse the known behaviours in the 
expected manner. 
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Fig. 3. Track of a single run in case of one obstacle and the related time functions of 

observations, conclusions and system state values (SP, SC, SCL, SCR). 

3.2 Fault Tolerant Control Example 

As a second simple application example of the suggested fuzzy behaviour-based 
control structure, fault diagnosis and reconfiguration of a simplified configuration 
(two tanks only) of the three tank benchmark [5] (Fig.4.) is introduced in the 
followings. The goal of the control system is to keep the water levels in tank1 and 
tank3 to be h1=0.5 and h3=0.1 by controlling the valve13 and the pump1 at a 
constant value of outflow from tank3 (normal behaviour of the system). The 



example is concentrating of the faults of the valve13. Were this valve opened and 
blocked, the water level in tank3 h3=0.1 could be controlled by pump1 (this case h1 
is changed) – this is the fault condition no.1. Were this valve closed and blocked, 
the water levels in tank1 and tank3 h1=0.5 and h3=0.1 could be controlled by the 
valve1 and the pump1 – this is the fault condition no.2. 
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V13
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Fig. 4. Simplified configuration of the “three tank” benchmark. 

The way of the implementation of the suggested fuzzy behaviour-based control 
structure is very similar to the previous example. However having a little bit more 
complicated symptom structure, after building the component behaviours – the 
controllers handling the separate situations (one controller for the normal, one for 
handling fault 1 and one for fault 2) this case, a separate symptom evaluation 
module is built. In this example for this task the fuzzy clustering was applied. The 
symptom evaluation module has to be able to characterise all the state-transitions 
in all the studied behaviours. The state-transition diagram for the studied states of 
the interpolative fuzzy automaton is shown on Fig.5. (The states are fuzzy 
membership values.) The structures of the state-transition rulebase and the 
behaviour fusion rulebase are similar as introduced in section two in (1) and (2). 
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Fig. 5. State-transition diagram of the fuzzy automaton, where e.g. f1-f2 is the conclusion 

of the symptom evaluation related to the - from f1 to f2 state-transition. 
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Fig. 6. The simulated results and the approximated fuzzy states of the complete control 

system (Normal - Fault 1 – Normal behaviour). 
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Fig. 7. The simulated results and the approximated fuzzy states of the complete control 

system (Normal - Fault: v13 = 0.8 unstudied situation). 

Conclusions of the example: The simulated example application demonstrated, 
that the fuzzy automaton is able to follow the studied relevant states and state-
transitions (e.g. normal-fault1-normal on Fig.6.). Moreover, because of the fuzzy 
state approximation and the fuzzy behaviour fusion in some cases the system is 
able to handle unknown (unstudied) fault situations too (see e.g. on Fig.7., where 
v13=0.8 open is an unstudied fault situation). 

3.3 User Adaptive Emotion-based System Example 

The last simple application example of the suggested fuzzy behaviour-based 
control structure is a user adaptive emotion-based system – an interactive selection 
system [8]. The example application is based on the idea, that from the viewpoint 
of the application, the user adaptivity is similar task as the situation adaptivity, 
introduced in the previous examples. Forming the emotional user model as on-line 
variable fusion of some fixed existing (off-line collected) models. In this case the 
user adaptation itself is handled as a kind of adaptive fusion of existing emotional 
models in the manner of “the more similar the actual user to one of the existing 
emotional model, the more similar must be the actual emotional model to that 
model”. In other words, instead of identifying the actual emotional model itself, 
the user is classified in the manner of existing emotional models. As an analogy to 
the previous applications, the different known behaviours are the different known 
emotional models, and the actual situation is the similarity of the actual user to the 
evaluators, gave the known emotional models. The main benefit of this view is 
quick convergence, as in the most cases the problem of user classification related 
to some existing emotional models is much simpler than the identification of the 
complicated emotional model itself. The ability of proper depiction of user 
emotion is highly dependent on the number and diversity of the known models 
available in the system. The implementation of the suggested fuzzy behaviour-
based control structure is very similar to the previous examples. The main 
differences (Fig.1, Fig.8.) are the substitution of the known behaviour controllers 
(FLCi) by the known emotional models (Object Descriptor – Emotional 
Descriptors), and the direct similarity checking (similarities of the actual user 
opinions to the content of the existing models) instead of symptom evaluation. 
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Fig. 8. Structure of the proposed adaptive emotional model generation. 

Using the selection system, the user can search the object database by giving 
emotion-related requests (like “friendly” or “convenient”). These requests are 
translated to physical parameters by the actual emotional model. The user 
adaptivity of the actual emotional model (see Fig.8.) is provided by the suggested 
fuzzy behaviour-based control structure. This case the state of the fuzzy 
automaton is interpreted as the actual approximated similarities of the actual user 
opinions and the known emotional models (Fig.8.). In practice the automaton is 
starting from an initial state (e.g. all the similarities are equal to 0.5), and during 
the events of the user feedback (e.g. giving his/her opinions related to an “edited 
object” – see Fig.8.) the actual similarities are recalculated. The state-transitions 
rulebase is a slightly different than the rulebase (1) suggested in the first section. 
Because of the direct similarity checking of the actual user opinions to the content 
of the known models, instead of the state-transition decisions of the symptom 
evaluation (these similarities are independent from the actual model, or state). The 
rulebase applied for the state-transitions of the fuzzy automaton for the ith state 
variable Si, [ ]N,1i∈ of the state vector S is the following (rules for interpolative 
fuzzy reasoning) [8]: 
If  Si=One  And SSi=One  Then Si=One 
If  Si=Zero And SSi=Zero  Then Si=Zero 
If  Si=One  And SSi=Zero And SSk=Zero Then Si=One   [ ] ik,N,1k ≠∈∀  
If  Si=Zero And SSi=One  And Sk=One And SSk=One Then Si=Zero 

            [ ] ik,N,1k ≠∈∃  
If  Si=Zero And SSi=One And Sk=Zero And  SSk=Zero Then Si=One 



where SSi is the calculated similarity of the actual user opinion to the ith known 
emotional model, N is the number of models (or state variables). The structure of 
the state-transition rules is similar for all the state variables. Zero and One are 
linguistic labels of fuzzy sets (linguistic terms) representing high and low 
similarity. The interpretations of the Zero and One fuzzy sets can be different in 
each Si, SSi universes. The reason for the interpolative manner of fuzzy 
reasoning is the incompleteness of state-transition rulebase [2]. In the example 
application, because of the simplicity of the model fusion (there is no need for the 
flexibility of the rule-based fusion), and the need of the quick response of the 
interactive program, weighted average (3) were used. 

Conclusions of the example: The goal of the actual user model modifications 
from the actual user side is to tune the system to be closer to his/her opinions. 
Practically the system is starting from an initial stage (where the similarities to the 
existing models are equal), and in the case if the user is disagreeing with the 
evaluation of the actual object given by the system, he/she has the possibility to 
modify the actual user model by giving his/her opinions. In most cases the given 
opinions are related to one or a few emotional descriptors of the edited object (see 
Fig.8.). But because of the suggested structure, all the changes are done globally 
(not only the part related directly to the given user opinion are “locally” modified). 
Hopefully that this kind of adaptation strategy is able to avoid incoherence could 
caused by step by step partial modifications. E.g. if one of the users have exactly 
the same opinions as one of the known model (even his/her opinions were given 
through some of the emotional parameters only), then after a few modification, 
detection steps, the system will use it exactly. Basically the “adaptive knowledge” 
of the system related to the actual user is not a new adapted emotional model, but 
the actual system state, a set of approximated similarities of the actual user 
opinions to the known emotional models. Because of the convex combination way 
of the emotional model combination, the suggested structure is unable to follow 
user requirements outside the area covered by the known models. In other words, 
the system cannot go beyond its existing “knowledge”. The only solution of this 
problem is extending the number and the variety of the known emotional models, 
to cover the model space as much as it is possible. 

Conclusions 

The goal of this paper was to introduce a simple and flexible fuzzy behaviour-
based control structure and some of its possible application areas, a behaviour-
based vehicle control, a fault tolerant control and a user adaptive emotion-based 
selection system application. The main benefits, both the simplicity and the 
situation adaptivity of the behaviour-based control structures are inherited from 
their hierarchical construction. In case of the first and second application example, 
this hierarchy has the meaning of building a (more) global strategy from some 
relevant component strategies. The suggested fuzzy behaviour-based control 
structure is simply fusing these strategies to form one strategy. This way a rather 
complicated strategy can be modularly built. Moreover, because of the fuzzy state 



approximation and the fuzzy behaviour fusion in some cases the system is able to 
handle unknown (unstudied) situations too (like in the second example (see 
Fig.8.), where “the tap is fixed 0.8 open” is an unstudied fault situation). The 
benefit of adapting fuzzy automaton for system state (similarity) approximation in 
the proposed structure is to give (state) memory to the system. On one hand this 
memory is needed for the correct symptom evaluation (see the second example), 
or able to hold a kind of “history” information as it was introduced in the first 
example (left, or right turning tendency strategy decision). On the other hand, in 
case of adaptive applications, the system state can be viewed as the model of the 
actual situation, or the surrounding environment of the system from the viewpoint 
of the known behaviours. Like in the case of the third example, where the system 
state is the model of the actual user with respect to the known emotional models. 
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