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Control Systems

The mathematical structure of a control system is

ẋ = f(x, u, t), x|t=0 = x0 (1)

y = h(x, u, t) (2)

wherex ∈ X is the state,u ∈ U is the input,y ∈ Y is the
output. This is calledstate-space representation, where
the state-spaceX can be

X ⊂ R
n: n-dimensional systems (classical mechanics)

X ⊂ GF(p): digital systems

X ⊂ M: manifold (input affine non-linear systems)

X ⊂ SU(n): systems over Lie-groups
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Quantum Systems

Each physical (quantum) system is associated with a
(topologically)separable complex Hilbert-spaceH with
inner product〈ψ|φ〉.

Physical observables are represented by densely-defined
self-adjoint operatorsonH. The expected value of the
observableA for the system in state represented by the
unit vector|ψ〉 ∈ H is 〈ψ|A|ψ〉.

The states a qubit may be measured in are known as
basis states (or vectors). As is the tradition with any sort
of quantum states,Dirac (or bra-ket)notationis used to
represent them. This means that the two computational
basis states are conventionally written as|0〉 and|1〉.
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Mathematical Representation

Classical mechanics: Hamilton-equation

Mathematical theory of dynamical systems:

State-space representation(R. E. KALMAN )

Operator representation: the system is represented
as a linear operator, that maps the space of input
functions onto the space of output functions

Statistical representation: the theory of
Hilbert-spaces

Basic concepts:

controllability / (non)observability

Generalization: dynamical systems defined over
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Qubit States

A pure qubit state is a linear superposition of those two
states. This means that the qubit can be represented as a
linear combinationof |0〉 and|1〉:

|ψ〉 = α|0〉 + β|1〉

whereα andβ areprobability amplitudesand can in
general both be complex numbers.
When we measure this qubit in the standard basis, the
probability of outcome|0〉 is |α|2 and the probability that
the outcome is|1〉 is |β|2. Because one must measure
eitherone stateor the other, it follows that

|α|2 + |β|2 = 1.
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Qubit States

The state at any timet is given by:

ψ(t) = X(t)ψ(0),

whereX is the so-calledevolution operator(matrix),
solution of the Schrödinger-equation

i~Ẋ = HX.

In quantum computers, the evolutionary operatorX
represents a (logic) operation to be performed on a
quantum bit, i.e. thereachabilityquestion means: „can
all operations be achieved on a quantum bit by
opportunely shaping an input electro/magnetic field?”
(Using finite energy.)
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Controllability Problems

Open-loop unconstrained controllability

Switching system’s controllability

Constrained controllability
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Open-loop Unconstrained
Controllability
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Reachability of Qubit States

LetH = H0 +
∑m

i=1Hiui, whereHi, i = 0, 1, . . . are
Hermitian operators, then the Schrödinger-equation can
be written as

Ẋ(t) = AX(t) +
∑m

i=1
BiX(t)ui(t) (3)

whereA,Bi are elements of the Lie algebra of2 × 2
skew-Hermitian matrices with zero trace, which is
denoted by su(2).

The solution of (3) with initial condition equals to
identity varies in the Lie group associated to su(2),
namely in the Lie group of2 × 2 unitary matrices with
determinant1. This group is called the group ofspecial
unitary matricesand is denoted by SU(2). Quantum Control Systems – p. 10/26



Reachability of Qubit States

Definition.The set ofreachable statesR(T ) consists of
all the possible values forX(T ) (solution of (3) at time
T with initial condition equal to identity) obtained
varying the controlsu1, . . . , um in the set of all the
piecewise continuous functions defined in[0, T ].

Theorem. Consider system (3) with3 ≥ m ≥ 2 and
assume thatB1, . . . , Bm are linearly independent. Then,
for any timeT > 0 and for any desired final stateXf

there exist a set of piecewise continuous control functions
u1, . . . , um driving the state of the systemX to
X(T ) = Xf at timeT . This means that in this case
R(T ) = SU(2) for everyT > 0.
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Controllability of LTI Systems

The fundamental matrix for zero initial time is

Φ(t) = eAt =
∑n

i=1
ψi(t)A

i−1,

and the reachability subspace is

R =
∑n−1

k=0
ImAkB.

Proposition. It is possible to generate linearly
independent functionsψi, i = 1, . . . , n if the
Kalman-rank conditionrank[B,AB, . . . , An−1B] = n is
satisfied.
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Controllability of Qubit States

Write the fundamental matrix (locally) as exponential function of

the „coordinates of second kind” associated with the equation

ẋ =
∑N

i=0

ρi(t)Aix.

Using the Wei–Norman equation:

ġ(t) =
(

∑K

i=1

eΓ1g1 · · · eΓi−1gi−1Eii

)

−1

ρ(t), g(0) = 0,

where{Â1, . . . , ÂK} is a basis of the Lie-algebraL(A1, . . . , AN),

[Âi, Âj] =
∑K

l=1

Γl
i,jÂl, Γi = [Γl

i,j]
K
j,l=1

.
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Controllability of Qubit States

Generalized Kalman-rank condition. For systems
A(ρ), B(ρ) the points attainable from the origin are
those from the subspace spanned by the vectors

R(A,B) := span

{

K
∏

j=1

A
ij
lj
Bk

}

,

whereK ≥ 0, lj, k ∈ {0, · · · , N}, ij ∈ {0, · · · , n− 1},
i.e.

R ⊂ R(A,B).
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Controllability of Qubit States

Denote byL(A0, . . . , AN) the finitely generated
Lie-algebra containing the matricesA0, . . . , AN , and let
Â1, . . . , ÂK be a basis of this algebra, then the points
attainable from the origin are in the subspace

R(A,B) =
N

∑

l=0

n−1
∑

n1=0

. . .

n−1
∑

nK=0

Im (Ân1

1 · · · ÂnK

K Bl).

The question is that under what condition isR = RA,B?
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Controllability of Qubit States

The fundamental matrix can be written in exponential
form:

Φ(t) =
∑n−1

n1=0
· · ·

∑n−1

nK=0
Ân1

1 · · · ÂnK

K ψn1,...,nK
(t)

Φ(t) =
∑

j∈J
Âjϕj(t), Âj := Â

j1
1 · · · ÂjK

K .

The subspaceRA,B is the image space of the matrix

RA,B := [ ÂjB ]j∈J. The controllability Grammian is
given as

W (σ, τ) = RA,B

(
∫ τ

σ

[ϕj(s) ]j∈J[ϕj(s) ]∗j∈Jds

)

R∗
A,B.
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Controllability of Qubit States

Theorem. The quantum system is controllable, iff

(i) The generalized Kalman-rank condition is satisfied:

rankRA,B = rank[ ÂjB ]j∈J

(ii) The set of functions{ϕj(σ) | j ∈ J} containsn
linearly independent functions.
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Switching System’s
Controllability
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Hybrid Systems

Hybrid models characterize systems governed by
continuous differential and difference equations and
discrete variables. Such systems are described by several
operating regimes (modes) and the transition from one
mode to another is governed by the evolution of internal
or external variables or events.

Depending on the nature of the events there are two big
classes of hybrid systems that are considered in the
control literature:switching systemsandimpulsive
systems.
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Switching Systems

A switching system is composed of a family of different
(smooth)dynamic modessuch that the switching pattern
gives continuous, piecewise smooth trajectories.
Moreover, it is assumed that one and only one mode is
active at each time instant.

In a broader sense every time-varying system with
measurable variations in time can be cast as a switching
system, therefore it is usually assumed that the number
of switching modes is finite and for practical reasons the
possible switching functions (sequences) are restricted to
be piecewise constant, i.e. only a finite number of
transition is allowed on a finite interval.
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Switching Systems

Formally, these systems can be described as:

ẋ(t) = fσ(t)(x(t), u(t)),

y(t) = hσ(t)(x(t), u(t)), x(τ+) = ι(x(τ−), u(τ), τ),

wherex ∈n is the state variable,u ∈ Ω ⊂m is the input
variable andy ∈p is the output variable.
Theσ :+→ S is a measurable switching function
mapping the positive real line intoS = {1, · · · , s}. The
impulsive effect can be described by the relation
(τ, x(τ−)) ∈ I ×A with I a set of time instances and
A ∈n a certain region of the state space.
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Universality of Quantum Gates

Consider a bimodal system

Ẋ = Aσ(t)X, X(0) = I, σ(t) : R
+ 7→ {1, 2}

andA1, A2 ∈ U(n) that is SU(n).
A set of gates is calleduniversalif – by switching
{A1, A2} – it is possible to generate all (special) unitary
evolutions.

SinceA1, A2 generate the whole Lie-algebrau(n) or
su(n), therefore almost every couple of skew-Hermitian
matrices generateu(n), i.e. almost every quantum gate is
universal.
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Constrained Controllability
– Many Open Questions
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Summary

Let Γ = A+ RB ⊂ L, L is the Lie-algebra associated to
G, i.e.

Ẋ = AX + uBX, X ∈ G, u ∈ R, X(0) = I.

Unconstrained controllability: Lie(Γ) = L. Apply
the Lie-algebraic rank condition.

Constrained controllability:u ∈ U ⊂ R
+. If

Lie(Γ) = Lie(−Γ) or
X ∈ {compact Lie-group} ⇒ LS Γ = L. Apply the
Lie-algebraic rank condition.
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Summary

Facts:

G = SO(3) thenẊ = (A1 + uA2)X, u ∈ U ⊂ R is
controllable for anyU containing more than one
element.

G = SO(3), controllability⇔ U contains at least
two distinct points.
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Thank you for attention!
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