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Control Systems

The mathematical structure of a control system is

.CI.Z':f(CE,U,t), x|t=O:$O (1)
y = h(x,u,t) (2)
wherex € X Is the statey € U Is the Inputy € Y is the

output. This Is calledtate-space representationhere
the state-spac& can be

X C R"™ n-dimensional systems (classical mechanics
X C GF(p): digital systems

X C M: manifold (input affine non-linear systems)

X C SU(n): systems over Lie-groups
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Quantum Systems

Each physical (quantum) system is associated with a
(topologically)separable complex Hilbert-spadé with

inner product{vy|¢).

Physical observables are represented by densely-defined
self-adjoint operator®n H. The expected value of the
observabled for the system in state represented by the

unit vector|y) € H is (| A|y).

The states a qubit may be measured in are known as
basis states (or vectors). As is the tradition with any sort
of quantum stated)irac (or bra-ket)notationis used to
represent them. This means that the two computational

basis states are conventionally written@sand|1).
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Mathematical Representation

Classical mechanics: Hamilton-equation
Mathematical theory of dynamical systems:
State-space representatiQR. E. KALMAN )

Operator representatiarthe system is represented
as a linear operator, that maps the space of input
functions onto the space of output functions

Statistical representatiarthe theory of
Hilbert-spaces

Basic concepts:

controllability / (non)observabillity
Generalization: dynamical systems defined over
Lie-groups
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Qubit States

A pure gubit state Is a linear superposition of those two
states. This means that the qubit can be represented as a

linear combinatiorof |0) and|1):

) = al0) + B]1)

wherea and 3 areprobability amplitudesnd can In
general both be complex numbers.
When we measure this qubit in the standard basis, the

probability of outcomeo0) is |a|* and the probability that

the outcome is$l) is |3|*. Because one must measure
eitherone stater the other, it follows that

a* + 16" = 1.
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Qubit States

The state at any timeis given by:
(t) = X(1)(0),

whereX Is the so-calle@volution operatomatrix),
solution of the Schrodinger-equation

ihX = HX.

In quantum computers, the evolutionary operator
represents a (logic) operation to be performed on a
guantum bit, i.e. theeachabllityquestion means: ,can
all operations be achieved on a quantum bit by
opportunely shaping an input electro/magnetic field?”
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Controllability Problems

Open-loop unconstrained controllability
Switching system’s controllability
Constrained controllability
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Open-loop Unconstrained
Controllability



Reachability of Qubit States

etH = Hy+ > ., Hu;, whereH,;,i =0,1,...are
Hermitian operators, then the Schrodinger-equation can
De written as

X(t) = AX(1) + Y BX(Hui(t) )

whereA, B; are elements of the Lie algebradk 2

skew-Hermitian matrices with zero trace, which is
denoted by su(2).

The solution of (3) with initial condition equals to
identity varies In the Lie group associated to su(2),
namely in the Lie group a2 x 2 unitary matrices with
determinant.. This group is called the group special
unitary matricesand is denoted by SU(2).
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Reachability of Qubit States

Definition. The set ofreachable state#(7") consists of

all the possible values foX (7") (solution of (3) at time
T with initial condition equal to identity) obtained
varying the controls, . . ., u,, In the set of all the
piecewise continuous functions defined(nT’|.

Theorem. Consider system (3) with> m > 2 and

assume thab, ..., B,, are linearly independent. Then,
for any timeI' > 0 and for any desired final stat&,

there exist a set of piecewise continuous control functions
ui, . .., Uy, driving the state of the systei to

X(T) = X attimeT. This means that in this case

R(T) = SU(2) for everyT > 0.
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Controllability of LTI Systems

The fundamental matrix for zero initial time Is

At " | i—1

O(t) = el = Zizl Wi ()AL,
and the reachability subspace Is
n—1
_ k

R = Zk:O Im A*B.
Proposition. It is possible to generate linearly
Independent functiong;, 2 = 1, ..., n If the

Kalman-rank conditiomank|[B, AB, ..., A" 'B] = nis
satisfied.
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Controllability of Qubit States

Write the fundamental matrix (locally) as exponential fuma of
the ,,coordinates of second kind” associated with the eqnati

. N
T = ZZ_:O pi(t)A;x.

Using the Wei—Norman equation:

K —1
g(t) _ (Zi:1 6I‘191 o efi—lgi—1 Em) ,O(t), g(O) _ O,

>

K

j] — 1—1 Fi’,jAlv I = [Fé,j]i(lzl'
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Controllability of Qubit States

Generalized Kalman-rank condition. For systems
A(p), B(p) the points attainable from the origin are
those from the subspace spanned by the vectors

Rap) = Span? I_IAZ”B;C S

\ J=1

whereK >0,1;,k € {0,--- ,N},i, €4{0,--- ,n— 1},
l.e.

R C R(A,B)-
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Controllability of Qubit States

Denote byL( Ay, ..., Ay) the finitely generated
Lie- algebra Contalnlng the matricelp, ..., Ay, and let

Ay, ..., Ak be a basis of this algebra, then the points
attainable from the origin are in the subspace

—1 n—1
Ras) :>: : D Im (A AR D).

[=0 n ni1— nK:O

The question is that under what conditioriis= R 4 5?
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Controllability of Qubit States

The fundamental matrix can be written in exponential
form:

The subspac® 4 5 Is the Image space of the matrix

R4 := [ A;Bliey. The controllability Grammian is
given as

Wior) = Ras [ 16306) il (o) o ) R
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Controllability of Qubit States

Theorem. The quantum system is controllable, iff
() The generalized Kalman-rank condition is satisfied:

rankR 4 3 = rank| A; B ;e

(i) The set of function§p;(o) | j € J} containsn
linearly independent functions.
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Switching System’s
Controllability



Hybrid Systems

Hybrid models characterize systems governed by
continuous differential and difference equations and
discrete variables. Such systems are described by several
operating regimes (modes) and the transition from one
mode to another is governed by the evolution of internal
or external variables or events.

Depending on the nature of the events there are two big
classes of hybrid systems that are considered in the
control literaturesswitching systemandimpulsive
systems
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Switching Systems

A switching system is composed of a family of different
(smooth)dynamic modesuch that the switching pattern
gives continuous, piecewise smooth trajectories.
Moreover, it Is assumed that one and only one mode is
active at each time instant.

In a broader sense every time-varying system with
measurable variations in time can be cast as a switching
system, therefore it is usually assumed that the number
of switching modes is finite and for practical reasons the
possible switching functions (sequences) are restricted to
be plecewise constant, Ii.e. only a finite number of
transition Is allowed on a finite interval.
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Switching Systems

Formally, these systems can be described as:

£(t) = fow/(x(t), u(t)),
y(t) = how (x(t),u(t), x(r7) = v(z(r7), u(r),7),

wherex €" Is the state variable, € ) C™ Is the input
variable andy €? Is the output variable.

Theo :*— S is a measurable switching function
mapping the positive real line int® = {1,--- ,s}. The
Impulsive effect can be described by the relation

(7,z(77)) € T x Awith Z a set of time instances and
A €™ a certain region of the state space.
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Universality of Quantum Gates

Consider a bimodal system
X =A,pnX, X(0)=1I, o(t):R"—{1,2}

and A, A, € U(n) thatis SU(Nn).

A set of gates Is calledniversalif — by switching

{A, Ay} —itis possible to generate all (special) unitary
evolutions.

SinceA;, A, generate the whole Lie-algebuén) or
su(n), therefore almost every couple of skew-Hermitian

matrices generate(n ), i.e. almost every quantum gate is
universal.
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Constrained Controllability
— Many Open Questions



Summary

LetI' = A+ RB C L, L1s the Lie-algebra associated to
G, l.e.

X =AX+uBX, XeG, ueR, X(0)=I.
Unconstrained controllability: Lig") = £. Apply

the Lie-algebraic rank condition.

Constrained controllabilityu € 44 C R™. If

Lie(I") = Lie(—I") or

X € {compact Lie-group= LST = L. Apply the
Lie-algebraic rank condition.
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Summary

Facts:

G = SO(3) thenX = (A + ud) X, u €U C Ris
controllable for any/ containing more than one
element.

G = SO(3), controllability < ¢/ contains at least
two distinct points.
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Thank you for attention!



	Overview
	Control Systems
	Quantum Systems
	Mathematical Representation
	Qubit States
	Qubit States
	Controllability Problems
	Reachability of Qubit States
	Reachability of Qubit States
	Controllability of LTI Systems
	Controllability of Qubit States
	Controllability of Qubit States
	Controllability of Qubit States
	Controllability of Qubit States
	Controllability of Qubit States
	Hybrid Systems
	Switching Systems
	Switching Systems
	Universality of Quantum Gates
	Summary
	Summary

