
MATLAB algorithms for TP transformation

*Pèter Baranyi and **Yeung Yam

*Integrated Intelligent Systems Japanese–Hungarian Laboratory
Budapest University of Technology and Economics
**Dept. Automation and Computer Aided Engineering
The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

1 Introduction

Higher Order Singular Value Decomposition (HOSVD) based Tensor Product (TP)
transformation technique has recently been proposed [1] in the field of Linear Matrix
Inequality (LMI) based control theories [2]. The main objective of the TP transfor-
mation is that it is capable of transforming a dynamic model to the convex com-
bination of linear systems, whereupon various LMI controller design techniques
can readily be executed. The resulting convex combination of linear systems can
be immediately viewed as Takagi-Sugeno inference based fuzzy model (TS fuzzy
model) or multiple-model. The main objective of this paper is to discuss some pro-
gramming details of the TP transformation and to propose MATLAB programs as
possible implementations. The matrix TP transformation is utilized in the case of
dynamic systems. For the sake of simplicity this paper discusses a scalar TP trans-
formation. There are two types of TP transformations. One transforms to minimal
basis. Its extended version transforms to convex basis. This paper focuses attention
on the one that transforms to minimal basis.

One of the directions of nonlinear control design theories deals with dynamic
models given in the state-space form as:

sx(t) = A(p(t))x(t)+B(p(t))u(t) (1)

y(t) = C(p(t))x(t)+D(p(t))u(t);

where the nonlinear system matrix is:

S(p(t)) =
(

A(p(t)) B(p(t))
C(p(t)) D(p(t))

)
∈ RO×I (2)

and vectorsx(t), u(t) andy(t) respectively are the state, input and output vectors;
and wheresx(t) = ẋ(t) is for a continuous-time system orsx(t) = x(t + 1) is for
a discrete-time system. Further,p(t) is time varying and is bounded by theN-
dimensional spacep(t) ∈ Ω : [a1,b1]× [a2,b2]× ..× [aN,bN] ⊂ RN. P(t) may, for
instance, include some elements ofx(t) or u(t). A variety of Linear Matrix Inequal-
ity based design techniques have been proposed to the Tensor Product (TP) form of

(1) [2, 3]. Therefore a numerical TP transformation has been proposed in [1] that is
capable of transforming (1) to TP form.

The input of the TP transformation is the dynamic system matrix (2) and the
transformation spaceΩ. Another input isλ which is responsible for the transforma-
tion accuracy, see later in Section II and III. The output of the transformation is the
possible components of the TP form of (2):

{Sr=1..R,wr=1..R(p(t))}= TPtrans f(S(p(t)),Ω,λ), (3)

where matricesSr ∈ RO×I are constant linear vertex system matrices. Functions
wr(p(t)) are the basis functions. The line over the basis function, such aswr(p(t)),
denotes that the basis is convex. Actually, the TP transformation finds a fixed poly-
tope, where the system varies in:S(p(t)) ∈ {S1,S2, . . . ,SR}. Having these compo-
nents the TP form of (2) can be defined as:

S(p(t))≈
ε

R

∑
r=1

wr(p(t))Sr , (4)

whereε is the approximation error which cames form the fact, shown in [4], that the
TP models (4), given with bounded number of components, are nowhere dense in the
modelling space. This implies that ifR, the number of the vertex systemsSr=1..R,
is bounded then it is impossible to find a TP representation whereε reaches zero
in general case. The main objective of the paper is to discuss some programming
details of the transformation and to give MATLAB programs as an implementation
of the TP transformation. In order to facilitate further reading this paper discusses a
simplified version of the above TP transformation. Two ways of the simplification
is done. A) The output of equ. (3) and (4) is matrix. The paper focuses on scalar TP
transformation instead. The scalar version of (4) approximates a scalar function by
a TP form:

f (x)≈
ε

R

∑
r=1

wr(x)br , (5)

wherebr and f (x) are scalar. B) The paper discuses a TP transformation that results
in a minimal basis instead of convex basis.

2 Scalar TP transformation to minimal basis and its
properties

Before going into details let us a have a brief digression here and define a tensor
product form where the basis functions are decomposed to all dimensions:

f (x)≈
ε

I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(xn)bi1,i2,..,iN , (6)

wherex ∈ RN is the vector of variablesxn. wn,i(xn) is the i-th basis function of
xn ∈ Xn. Observe that this can always be given in the form of (5):y = f (x) =
∑R

r=1 ωr(x)βr , where the basis is simply computed by the product of
ωr(x) = ∏N

n=1wn,in(xn), andβr = bi1,i2,..,iN , wherer = ordering{i1, i2, .., i3}. The
function "ordering" results in the linear index equivalent ofN dimensional array’s
index i1, i2, .., iN, when the size of the array isI1× I2× ..× IN. ThusR= ∏N

n=1 In.
Let us turn back to the main objective of this section.

Transformation 1 TP transformation functions withf (x) given in the bounded
spacex ∈ Ω and results in the basis functionswn,i(xn) and the valuesbi1,i2,..,iN of
the TP form (6):

{wn=1..N,in=1..In,bi1,i2,..,iN}= TPtrans f(f (x),Ω,λ).

The TP transformation is computed numerically, which obviously brings numerical
error in the results. The error of valuesbi1,i2,..,iN is about10−15. It is the typical
computer error which comes from the finite digital computation. Another error, let
it be denoted byα, is obtained on the basis functions. It could be considerable larger
than10−15 and comes from the nature of the TP transformation. In order to control
α we should have a few words aboutλ which is a technical programming parameter
of the transformation, see Section III. The greaterλ we set the more precise basis
we obtain. Letα simply be the error between the basis functions obtained by the TP
transformation in ideal case, whenλ = ∞, and the basis functions obtained in real
case, whenλ < ∞:

α = max
n,in,xn

|w(λ=∞)
n,in (xn)−w(λ<∞)

n,in (xn)|.

Therefore, ifλ→ ∞ thenα→ 0, see Section III. The increase ofλ suffers from the
fact that it exponentially explodes the computation requirement of the TP transfor-
mation. Therefore, the restriction ofλ is the computational power at hand. Practi-
cally, we set the value ofλ as great as possible.

At this point it is worth introducingε of (6) as another error indicator of the TP
transformation. Work [4] proofs that if the number of basis functions is bounded
then the TP approximator, equ. (6), is nowhere dense in the space of approximation
functions. This means that there are infinite number of functions that cannot exactly
be represented in TP form by bounded number of basis functions. This implies that
the TP transformation cannot generate exact TP representation in general, because
it results in a finite number of basis functions. In ideal case, when we have infinite
computational power, it is possible to handle infinite number of basis functions by
computer. In reality, we can only say that the more basis functions we can compute
the better TP representation can be generated [4]. Even in case, when the given
function can be represented by a finite number of basis functions, it is still in ques-
tion wether we have enough computational capacity to handle sufficient number of
them. We can conclude that if we use less number of basis functions than required
by the given functionf (x) then the TP approximation, equ. (6) becomes only an

approximationf̂ (x) of f (x) (even in case when we assume thatα = 0). Let this
approximation errorε of (6) be defined as:

ε = max
x
| f (x)− f̂ (x)|.

We should remark here thatε andα have strong relation. If the functionf (x) cannot
be represented in TP form with infinite number of basis functions thenε is not zero
even in case whenα = 0. Let us see the opposite case: if the functionf (x) can be
represented by TP form with finite number of basis functions thenε is zero only if
λ is infinite, namely,α = 0.

Let us have a few words about the properties of the basis:
i) (Orthonormality and normality) The TP transformation results in orthogo-

nal and normalized basis functions:

lim
λ→∞

(Z
Xn

wn,i(xn)wn,i(xn)
)

= 1 and lim
λ→∞

(Z
Xn

wn,i(xn)wn, j(xn)
)

= 0,

wheren = 1..N; i 6= j; i, j = 1..In.
ii) (Minimal basis system) The TP transformation gives the minimal number of

basis functions, in the sense that the resulted TP approximation has no variant with
less number of basis functions. Namely, the following equality:

I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(xn)bi1,i2,..,iN =
J1

∑
j1=1

J2

∑
j2=1

..
JN

∑
jN=1

N

∏
n=1

vn,in(xn)ci1,i2,..,iN ,

wherewn,in(xn) andbi1,i2,..,iN are resulted by TP transformation, has no solution for
basisvn,in(xn) and valuesci1,i2,..,iN if ∃n : Jn < In.

iii) (Error bound) The TP transformation helps with decreasing the number
of basis functions subject to minimal reduction error. The transformation relates
one valueσn,i ∈ R+ to all basis functionwn,in(xn). When the basis functions are
discarded then the resulted error is bounded by the sum of the corresponding values
σn,i . For instance, assume that we have

f1(x) =
I1

∑
i1=1

I2

∑
i2=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(xn)bi1,i2,..,iN .

Then, letw1,I1(x1) andw2,I2(x2) be discarded:

f2(x) =
I1−1

∑
i1=1

I2−1

∑
i2=1

..
IN

∑
iN=1

N

∏
n=1

wn,in(xn)bi1,i2,..,iN .

Then

‖ f1(x)− f2(x)‖L2 = σ1,I1(x1)+σ2,I2(x2), and max
x
| f1(x)− f2(x)| ≤σ1,I1(x1)+σ2,I2(x2).

3 Computational Details

In order to catch the key idea, let the TP transformation be discussed for two variable
functions f (x), x ∈ R2, first.

3.1 Two variable case

The steps of the TP transformation:

(w1,i=1..I ,w2, j=1..J,bi, j) = TPtrans f(f (x1,x2),Ω,λ)

are:
Step 1)Set the transformation spaceΩ : [a1,b1]× [a2,b2].
Step 2)Define a rectangular grid by values:a1 ≤ g1,1 < g1,2 < .. < g1,M1 ≤ b1

anda2≤ g2,1 < g2,2 < .. < g2,M2 ≤ b2 which values define the location of grid lines.
Valuesgn,mn can be arbitrary, but if there is no any specific purposes in mind then it
is recommended to locate the grid lines equidistantly. The number of the grid lines
(M1 andM2) let be defined byλ as: M1 = M2 = λ

2 . The locations of the grid lines
can automatically be generated as:

g1,m1 = a1 +
b1−a1

M1−1
(m1−1);g2,m2 = a2 +

b2−a2

M2−1
(m2−1).

Step 3)Sample the given functionf (x) over the grid points:

bs
m1,m2

= f (g1,m1,g2,m2); m1 = 1..M1; m2 = 1..M2,

where superscript "s" means "sampled". Construct matrixBs ∈ RM1×M2 from sam-
pled valuesbs

m1,m2
.

Step 4)Execute Singular Value Decomposition (SVD) on matrixBs:

Bs =
SVD

U1DUT
2 . (7)

Let us briefly recall the theorem of SVD:

Theorem 1 (Matrix singular value decomposition (SVD))Every real valued(I ×
J)-matrixB can be written as the product ofB = U1 ·D ·UT

2 , in which
1. U1 =

[
u1,1 u1,2 · · · u1,I

]
is a unitary(I × I)-matrix,

2. U2 =
[
u2,1 u2,2 · · · u2,J

]
is a unitary(J×J)-matrix,

3. D is an(I ×J)-matrix with the properties of
(i) pseudo-diagonality:
D = diag(σ1,σ2, . . . ,σmin(I ,J))
(ii) ordering: σ1≥ σ2≥ ·· · ≥ σmin(I ,J) ≥ 0. Theσi are the singular values ofB,

and the vectorsU1,i andU2, j are, respectively, ani-th left and anj-th right singular
vector.

(iii) rank: the number of the non zero singular values equals the rank of matrix
B.

Therefore, the diagonal matrixD of equ.: (7) contains the singular valuesσk=1..min(M1,M2)
in decreasing order, for instance (assume thatM1 < M2):

D =




σ1 0 · · · 0 · · · 0
0 σ2 . . . 0 · · · 0
...

...
.. .

... · · · 0
0 0 · · · σM1 · · · 0


 ∈ RM1×M2.

Let us partition the resulted matrices as:

Bs =
SVD

(
Ur

1 Ud
1

)(
Dr 0
0 Dd

)(
Ur

2 Ud
2

)T

Superscript "r" means "retained" and superscript "d" means "discarded". Let us re-
tainI number of singular values and discard the rest, namely, matrixDd ∈R(M1−I)×(M2−I)

and they corresponding singular vectors contained in matricesUd
1 andUd

2. If we dis-
card only zero singular values then we can write:Bs = Ur

1Dr (Ur
2)

T , where the size
of Dr is I × I . If matrix Dd contains nonzero singular values then:

Bs≈ Ur
1Dr (Ur

2)
T , where the error is: ‖Bs−Ur

1Dr (Ur
2)

T ‖L2 =
min(M1,M2)

∑
k=I+1

σk.

MatricesUr
1 andUr

2 are orthogonal and normalized. Therefore, the maximum error
is bounded by:

max
elements

|Bs−Ur
1Dr (Ur

2)
T | ≤

min(M1,M2)

∑
k=I+1

σk.

Step 5)Determine the basis from matricesUr
1 andUr

2. Each columnu1,i=1..I

of matrix Ur
1 ∈ RM1×I determines one basis function of variablex1. Along in the

same line, the columns of matrixUr
2 ∈ RM2×I define the basis functions of variable

x2. The valuesu1,m1,i of one column define the values of the basis functionw1,i(x1),
overx1 = g1,m1:

w1,i(g1,m1) = u1,m1,i .

In order to get continuous basis functionw1,i(x1), let the above valuesu1,m1,i be
connected by straight lines. The less distance we have between pointsg1,m1 the
better approximation of the basis function is obtained. In other words, the greater
λ we set, namely, the more dense pointsg1,m1 we define the more precise basis we
obtain.

Having the basis functions we can write the TP form:

f̂ (x) = w1(x1)DrwT
2 (x2), (8)

where row vectorswn(xn), n = 1..2, contain the basis functions as:

wn(xn) =
(
wn,1(xn) wn,2(xn) · · · wn,I (xn)

)
.

Note that (8) is equivalent with the 2 dimensional version of (6):

f̂ (x) =
I

∑
i=1

J

∑
j=1

w1,i(x1)w2, j(x2)di, j ,

whereI = J in the present case anddi, j are the elements ofDr . The piece-wise linear
basis defines bi-linear approximation, in the sense that over the rectangulars of the
grid we obtain bi-linear functions. We can conclude that ifλ→ ∞ andDd has only
zero singular values then the error betweenf̂ (x) and f (x) tends to zero, which is
in full accordance with the remarks of the previous section. It is straightforward to
see that the features i)..iii) of the TP Transformation is inherited from the SVD. For
instance, i) comes from the fact thatUT

n Un = I , whereI is the identity matrix. ii) is
guaranteed by the SVD, since the number of the nonzero singular values is the rank
of Bs. Bs can not be generated by a product resulting in a matrix of lower rank. iii) is
also ensured by the SVD and piece-wise linear basis. The singular values represent
the minimal changes, in the sense of normL2, when we decrease the rank of the
given matrix. Each singular value is assigned to one column of matrixUn, hence, to
one basis function.

3.2 MATLAB program and numerical example for two variable
case

This example is intended to illustrate how to extract the tensor product form of
function:

y = f (x1,x2) = (1+x−2
1 +x−1.5

2)2. (9)

Let the transformation spaceΩ be defined asx1 ∈ [1,5] andx2 ∈ [1,5]. Let the grid
density beλ = 25= 5×5. Let us discuss a MATLAB algorithm that computes the
steps of the TP transformation.

clear; M1=5; a1=1; b1=5; M2=5; a2=1; b2=5;
%sampling
for m1=1:M1

for m2=1:M2
x1=a1+(b1-a1)/(M1-1)*(m1-1);
x2=a2+(b2-a2)/(M2-1)*(m2-1);
Bs(m1,m2)=(1+x1(−2) +x2(−1.5))2;

end
end
% SVD
[U1,D,U2]=svd(Bs); diag(D)
input(’ number of singular values to keep = ’), ns=ans;
U1=U1(:,1:ns); U2=U2(:,1:ns); D=D(1:ns,1:ns);
%creating basis functions
figure(1); plot(U1); figure(2); plot(U2);

%The resulted approximation
B=U1*D*U2’; figure(3); mesh(B);
% Reduction error
figure(4); mesh(Bs-B);
Executing this program we find that the rank of the sampled matrixBs is three.

This program results in rough basis functions, see Figure 1, and, hence, in a rough
bi-linear approximation of the given function, see Figure 2. When we discard non
zero singular values during executing the program, we see that additional reduction
error is obtained.

Let us execute the above program withλ = 640000= 800×800, so as the pro-
gram starts as:

clear; M1=800; a1=1; b1=5; M2=800; a2=1; b2=5;
%sampling
When we execute the program, we see that the number of singular values is 800.

The number of nonzero singular value is three again (in order to see the first ten sin-
gular values type "diag(D(1:10,1:10))" instead of "diag(D)"). We also can see that
the basis functions are defined by800points, which is a considerable improvement,
see Figure 3. Figure 4 shows that the approximation is much improved. Note that
the number of nonzero singular values will be three even in case when we increase
λ to infinity. This means that the given function can exactly be given by3×3 basis
system; we may find the basis via analytic derivations as well.

1 2 3 4 5
-1

-0.5

0

0.5

1
w x()

X1

1 2 3 4 5
-1

0

0.5

1w x()

X2

-0.5

Figure 1: (Extracted basis functions over 5 grid lines

3.3 Multi variable case

This subsection discusses how to calculate the transformation when the number of
variables is greater than two,N > 2. Before going into details, let as have a brief
digression here and introduce some basic tensor operations and notations. Tensor
A ∈ RI1×I2×..×IN is anN dimensional array of valuesai1,i2,..,iN , wherein = 1..In and
n = 1..N.

Definition 1 (n-mode matrix of tensorA) Assume anNth order tensorA ∈RI1×I2×...×IN .
Then-mode matrixA(n) ∈ RIn×J, J = ∏k Ik, wherek = 1, . . . ,N andk 6= n, contains

1 2 3 4 5
0

5
0

5

10

Y

X2

X1

Figure 2: (Approximation over5×5 grid

1 2 3 4 5
-0.1

0

0.1

0.2

0.3
w x()

X1

1 2 3 4 5
-0.2

0

0.2

0.4

0.6

w x()

X2

Figure 3: (Extracted basis functions over 800 grid lines

all the vectors in thenth dimension of tensorA . The ordering of the vectors is arbi-
trary in A(n). This ordering shall, however, be consistently used later on.(A(n)) j is
called an jth n-mode vector.

Let us discuss the following example: LetA be a 3 dimensional tensor:

a1..2,1..2,1 =
(

1 2
3 4

)
; a1..2,1..2,2 =

(
5 6
7 8

)
;

A first mode matrix ofA is: A(1) =
(

1 2 5 6
3 4 7 8

)
. A third mode matrix ofA is:

A(3) =
(

1 2 3 4
5 6 7 8

)
. Let us define a MATLAB program that functions with 3

dimensional tensors. Variable "d" denotes the dimension:
function B=layout(d,A)
K=size(A); l=0;
for n=1:3

if n ∼ =d
l=l+1; p(l)=n;

end
end

Figure 4: (Example 2/B) Approximation over800×800grid

I=K; I(d)=1;
for t=1:K(p(1))*K(p(2))

[i(p(1)),i(p(2))]=ind2sub([K(p(1)) K(p(2))],t);
for k=1:K(d)

i(d)=k; B(i(d),t)=A(i(1),i(2),i(3));
end

end
This can easily be extended toN dimension. For instance to 4 dimension:
type "for n=1:4" instead of "for n=1:3";
type "t=1:K(p(1))*K(p(2))*K(p(3))" instead of "t=1:K(p(1))*K(p(2))"
type "[i(p(1)),i(p(2)),i(p(3))]=ind2sub([K(p(1)) K(p(2))],K(p(3)),t)" instead of

"[i(p(1)),i(p(2))]=ind2sub([K(p(1)) K(p(2))],t)"
type "B(i(d),t)=A(i(1),i(2),i(3),i(4))" instead of "B(i(d),t)=A(i(1),i(2),i(3))"
Note that any matrix of which the columns are given byn-mode vectors(A(n)) j

can readily be restored to become tensorA . The restoration can be executed even
in case when some rows ofA(n) are discarded since the value ofIn has no role in
the ordering of(A(n)) j . The restoration in MATLAB can be done by the program
below. The restoration has no unique solution. Therefore, an additional parameter
of the function is introduced and termed "example". This parameter defines the size
of the restored tensor on all dimension except d.

function B=restore(d,A,example)
K=size(example);
[s,d]=size(A); l=0;
for n=1:3

if n ∼ =d
l=l+1; p(l)=n;

end
end
I=K; I(d)=1;

for t=1:K(p(1))*K(p(2))
[i(p(1)),i(p(2))]=ind2sub([K(p(1)) K(p(2))],t);
for k=1:s

i(d)=k; B(i(1),i(2),i(3))=A(i(d),t);
end

end

Definition 2 (n-mode matrix-tensor product)The n-mode product of tensorA ∈
RI1×I2×···×IN and a matrixU ∈ RJ×In, as denoted byA ×n U, is an (I1× I2× ·· ·×
In−1× J× In+1× ·· · × IN)-tensor of which the entries are given byA ×n U = B,

whereB(n) = U ·A(n). Let A ×1 U1×2 U2×·· ·×N UN be denoted asA
N⊗

n=1
Un for

brevity.

This product can be given in MATLAB as:
function C=product(d,A,B)
H=layout(d,A); F=B*H; C=restore(d,F,A);
Having these operations we can easily define the multi variable TP transforma-

tion.
Note that equ. (6) can be equivalently written by tensor operations:

f (x) = B
N⊗

n=1
wn(xn),

where row vectorwn(xn) contains the basis functionswn,i=1..In(xn) as: wn(xn) =(
wn,1(xn) wn,2(xn) · · · wn,In(xn)

)
. The next part shows how to transform the

multi variable functionf (x), wherex ∈ RN.
The computational steps of TP transformation:
Step 1)Set the transformation space:Ω : [a1,b1]× [a2,b2]× ..× [aN,bN].
Step 2)Define a hyper rectangular grid. Let the grid density of the dimensions

be defined byλ: Mn = λ
N , n= 1..N. The equidistantly located grid lines are:gn,mn =

an + bn−an
Mn−1 (mn−1), mn = 1..Mn.

Step 3)Sampling the given function:

bs
m1,m2,..,mN

= f (g1,m1,g2,m2, ..,gN,mN); mn = 1..Mn.

Step 4)Store the sampled valuesbs
m1,m2,..,mN

into tensorBs then execute HOSVD on
it: Bs = B⊗N

n=1Un. In order to understand this product, let us recall the definition
of HOSVD:

Theorem 2 (Higher Order SVD (HOSVD))Every tensorA ∈ RI1×I2×···×IN can be
written as the product

A = S
N⊗

n=1
Un (10)

in which

1. Un =
[
u1,n u2,n . . . uIN,n

]
is a unitary(IN× IN)-matrix called n-mode

singular matrix.
2. tensorS ∈ RI1×I2×...×IN whose subtensorsSin=α have the properties of
(i) all-orthogonality: two subtensorsSin=α andSin=β are orthogonal for all pos-

sible values ofn,α andβ :
〈
Sin=α,Sin=β

〉
= 0 whenα 6= β,

(ii) ordering: ‖Sin=1‖ ≥ ‖Sin=2‖ ≥ ·· · ≥ ‖Sin=In‖ ≥ 0 for all possible values of
n.

The Frobenius norm‖Sin=i‖, symbolized byσ(n)
i , aren-mode singular values of

A and the vectorui,n is anith singular vector.Sis termed core tensor.

The computation of the HOSVD can be done by executing SVD on each dimen-
sion of A . Namely,Un in Eq. (10) is determined by executing SVD (Theorem 1)
on then-mode matrixA(n) of tensorA . After discarding the singular valuesσn,i

one obtains:A(n) = Ur
n,1Dr

n(Ur
n,2)

T = Ur
n,1S(n). RestoringS(n) into tensorSn, we

have: A = Sn×n Ur
n. Determination ofUn+1 is done in the same way. Again, let

SVD be executed onn+1-mode matrix(Sn)(n+1) of tensorSn obtained in the above
step. This results in:(Sn)(n+1) = Ur

n+1,1Dr
n+1(U

r
n+1,2)

T . Then restoring the product
of S(n+1) = Dr

n+1(U
r
n+1)

T into tensorSn+1 we have:A = Sn+1×n Un×n+1 Un+1.
Repeating the above steps on each dimension leads to eq. (10). Like in the case of
SVD we can give error bound if nonzero singular values are discarded. The error is
computed by summing up all the discarded singular values in all dimension:

‖Bs−B‖L2 = ∑
n,kn

σn,kn, (11)

whereσn,kn denotes thekn-th discarded singular value obtained by SVD executed
in dimensionn. More detailed discussion of HOSVD and graphical demonstrations
are given in paper [5]. Let us construct a simple MATLAB algorithm. First let us
slightly specialize the SVD function of MATLAB:

function [U,S]=psvd(A)
[U1,D,U2]=svd(A); diag(D)
input(’ number of singular values to keep = ’), ns=ans;
U1=U1(:,1:ns); U2=U2(:,1:ns); D=D(1:ns,1:ns);
U=U1; S=D*U2’;
Let us define the function of 3 dimensional HOSVD as:
function [U1,U2,U3,S]=hosvd(A)
H1=layout(1,A); [U1,HN1]=psvd(H1);
A1=restore(1,HN1,A);
H2=layout(2,A1); [U2,HN2]=psvd(H2);
A2=restore(2,HN2,A1);
H3=layout(3,A2); [U3,HN3]=psvd(H3);
S=restore(3,HN3,A2);
Step 5)Define the basis functionwn,i from the columns of matricesUn like in

the two variable case.

Having the basis we can write that:

f (x)≈
ε

B
N⊗

n=1
wn(xn).

Transformation error bound (see property iii) in Section III) Let function̂f (x) be

the TP representation where only zero singular values are discarded. Let̂̂f (x) be
derived from f̂ (x) where nonzero singular values rae discarded as well. Then

max
x
| f̂ (x)− ̂̂f (x)| ≤ ∑

n,kn

σn,kn,

whereσn,kn is from (11). Other form of the error bound is:‖ f̂ (x)− ̂̂f (x)‖L2 =
∑n,kn σn,kn. Both error bounds directly come form the error bound of HOSVD.

4 Conclusion

This paper presents the fundamentals of scalar TP transformation and some MAT-
LAB programs as possible implementation. We have not set any restrictions how
the function f (x) is defined. This implies that the scalar transformation is capable
of transforming, functions given by soft computing tools, for instance, theRudas’s
type operators [6, 7, 8] based functions can be transformed as well. This would help
in fuzzy control with carrying the advantages of theRudas’sgeneral operators over
the fuzzy control techniques.AcknowledgementP.Baranyi is supported by Zoltán
Magyary scholarship. This work is supported by FKFP 180/2001.

References
[1] P. Baranyi. HOSVD basedTP model transformation as a way toLMI based controller design.

IEEE Trans. IE. (in press).

[2] K. Tanaka and H. O. Wang.Fuzzy Control Systems Design and Analysis - A Linear Matrix Inequality
Approach. Hohn Wiley and Sons, Inc., 2001, 2001.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and
control theory.Philadelphia PA:SIAM, 1994.

[4] D. Tikk, P. Baranyi, and R.J.Patton. Polytopic andTSmodels are nowere dense in the approximation
model space.IEEE Int. Conf. System Man and Cybernetics (SMC’02), 2002. Proc. on CD.

[5] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multi linear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.

[6] I. J. Rudas and O. Kaynak. New types of generalized operations. computational intelligence: Soft
computing and fuzzy-neuro integrationwith applications.Springer NATO ASI Series. Series F:
Computer and Systems, Sciences, 192, 1998.

[7] I. J. Rudas and O. Kaynak. Entropy-based operations on fuzzy sets.IEEE Trans. on Fuzzy Systems,
6, 1998.

[8] I. J. Rudas and O. Kaynak. Minimum and maximum fuzziness generalized operators.Fuzzy Sets
and Systems, 98, 1998.

