MATLAB algorithms for TP transformation

*Péter Baranyi and **Yeung Yam

*Integrated Intelligent Systems Japanese—Hungarian Laboratory
Budapest University of Technology and Economics

**Dept. Automation and Computer Aided Engineering

The Chinese University of Hong Kong, Shatin, N.T., Hong Kong

1 Introduction

Higher Order Singular Value Decomposition (HOSVD) based Tensor Product (TP)
transformation technique has recently been proposed [1] in the field of Linear Matrix
Inequality (LMI) based control theories [2]. The main objective of the TP transfor-
mation is that it is capable of transforming a dynamic model to the convex com-
bination of linear systems, whereupon various LMI controller design techniques
can readily be executed. The resulting convex combination of linear systems can
be immediately viewed as Takagi-Sugeno inference based fuzzy model (TS fuzzy
model) or multiple-model. The main objective of this paper is to discuss some pro-
gramming details of the TP transformation and to propose MATLAB programs as
possible implementations. The matrix TP transformation is utilized in the case of
dynamic systems. For the sake of simplicity this paper discusses a scalar TP trans-
formation. There are two types of TP transformations. One transforms to minimal
basis. Its extended version transforms to convex basis. This paper focuses attention
on the one that transforms to minimal basis.

One of the directions of nonlinear control design theories deals with dynamic
models given in the state-space form as:

s(t) = A(p(t))x(t) + B(p(t))u(t) @

y(t) = C(p(t))x(t) + D(p(t))u(t);
where the nonlinear system matrix is:

ABD) BRM) _ o
s = (b)) Bby) < @

and vectorx(t), u(t) andy(t) respectively are the state, input and output vectors;
and wheresx(t) = x(t) is for a continuous-time system ex(t) = x(t + 1) is for

a discrete-time system. Furthex(t) is time varying and is bounded by th¢-
dimensional spacp(t) € Q : [a1,b1] x [a, 2] x .. x [an,bn] € RY. P(t) may, for
instance, include some elementsf) or u(t). A variety of Linear Matrix Inequal-

ity based design techniques have been proposed to the Tensor Product (TP) form of

() [2, 3]. Therefore a numerical TP transformation has been proposed in [1] that is
capable of transforming (1) to TP form.

The input of the TP transformation is the dynamic system matrix (2) and the
transformation spac®. Another input is\ which is responsible for the transforma-
tion accuracy, see later in Section Il and Ill. The output of the transformation is the
possible components of the TP form of (2):

{S—1.r, W1 r(p(t))} = TPtransf{S(p(t)),Q,A), 3)

where matricesS, € R°*! are constant linear vertex system matrices. Functions
w; (p(t)) are the basis functions. The line over the basis function, sugh(ast)),
denotes that the basis is convex. Actually, the TP transformation finds a fixed poly-
tope, where the system varies B(p(t)) € {S1,S,,...,Sr}. Having these compo-
nents the TP form of (2) can be defined as:

S(p) =~ Y W (p(1))S. (4)

whereg is the approximation error which cames form the fact, shown in [4], that the
TP models (4), given with bounded number of components, are nowhere dense in the
modelling space. This implies thatK, the number of the vertex syster8s_1 g,

is bounded then it is impossible to find a TP representation wheeaches zero

in general case. The main objective of the paper is to discuss some programming
details of the transformation and to give MATLAB programs as an implementation
of the TP transformation. In order to facilitate further reading this paper discusses a
simplified version of the above TP transformation. Two ways of the simplification
is done. A) The output of equ. (3) and (4) is matrix. The paper focuses on scalar TP
transformation instead. The scalar version of (4) approximates a scalar function by
a TP form:

R
f(x) N ;Wr (x)br,)

whereb, and f(x) are scalar. B) The paper discuses a TP transformation that results
in a minimal basis instead of convex basis.

2 Scalar TP transformation to minimal basis and its
properties

Before going into details let us a have a brief digression here and define a tensor
product form where the basis functions are decomposed to all dimensions:

I I IN N

OO~ S 5 > [Wnin(0)bigis...in: (6)

€ i1=1lip=1 iN=1n=1

wherex € RN is the vector of variableg,. Whi(Xn) is thei-th basis function of
Xn € Xn. Observe that this can always be given in the form of) f(x) =
er:loor(x)Br, where the basis is simply computed by the product of

W (X) = rmz1Wn.,in(Xn): andB, =bj, i, iy, Wherer =orderingfiy, o, ..,is}. The
function "ordering" results in the linear index equivalentNbflimensional array’s
indexiy, iz, ..,in, When the size of the array Ig x I> x .. x Iy. ThusR= |'|,“1‘:1In.
Let us turn back to the main objective of this section.

Transformation 1 TP transformation functions witl (x) given in the bounded
spacex € Q and results in the basis functiong, (x,) and the values, i, i\ Of
the TP form (6):

{Wn=l..N.in=l..|na bil,iz,..,iN} =T PtranSf(f (X>7 Q7)\>

The TP transformation is computed numerically, which obviously brings numerical
error in the results. The error of valubg j,.._iy is about10-1°. It is the typical
computer error which comes from the finite digital computation. Another error, let
it be denoted by, is obtained on the basis functions. It could be considerable larger
than10~1° and comes from the nature of the TP transformation. In order to control
o we should have a few words abdutvhich is a technical programming parameter
of the transformation, see Section Ill. The greatave set the more precise basis
we obtain. Letr simply be the error between the basis functions obtained by the TP
transformation in ideal case, whan= o, and the basis functions obtained in real
case, when < co:

o = max|wy () — i ().

N,in,Xn

Therefore, ifA — o thena — 0O, see Section lll. The increase ®&uffers from the
fact that it exponentially explodes the computation requirement of the TP transfor-
mation. Therefore, the restriction afis the computational power at hand. Practi-
cally, we set the value of as great as possible.

At this point it is worth introducing of (6) as another error indicator of the TP
transformation. Work [4] proofs that if the number of basis functions is bounded
then the TP approximator, equ. (6), is nowhere dense in the space of approximation
functions. This means that there are infinite number of functions that cannot exactly
be represented in TP form by bounded number of basis functions. This implies that
the TP transformation cannot generate exact TP representation in general, because
it results in a finite number of basis functions. In ideal case, when we have infinite
computational power, it is possible to handle infinite number of basis functions by
computer. In reality, we can only say that the more basis functions we can compute
the better TP representation can be generated [4]. Even in case, when the given
function can be represented by a finite number of basis functions, it is still in ques-
tion wether we have enough computational capacity to handle sufficient number of
them. We can conclude that if we use less number of basis functions than required
by the given functionf (x) then the TP approximation, equ. (6) becomes only an

~

approximationf (x) of f(x) (even in case when we assume tbat 0). Let this
approximation errog of (6) be defined as:

~

€= mXax|f(x) — f(x)].

We should remark here thatinda have strong relation. If the functiof(x) cannot
be represented in TP form with infinite number of basis functions ¢ghiemot zero
even in case whea = 0. Let us see the opposite case: if the functigr) can be
represented by TP form with finite number of basis functions thisrzero only if
A is infinite, namelya = 0.

Let us have a few words about the properties of the basis:

i) (Orthonormality and normality) The TP transformation results in orthogo-
nal and normalized basis functions:

Jim (/Xn Wi (Xn)Wn i (xn)) =1 and lim < /Xan,i (xn)wn,j(xn)> =0,

wheren=1..N; i#j; i,j=1.l,

if) (Minimal basis systen) The TP transformation gives the minimal number of
basis functions, in the sense that the resulted TP approximation has no variant with
less number of basis functions. Namely, the following equality:

i 12 IN N h N N
Wiin (Xn)Diyis...in = - Vinin (Xn)Cigiz,...in
i1=1lip=1 iN=1n= ! jlz=ljzz=l sz=ln|:|1 " ’

wherew,, (%)) andb;, i, i, are resulted by TP transformation, has no solution for
basisvni,(Xn) and values;, ;, i, if 3In:Jy < In.

iii) (Error bound) The TP transformation helps with decreasing the number
of basis functions subject to minimal reduction error. The transformation relates
one valueo,; € R" to all basis functionw,j, (xn). When the basis functions are
discarded then the resulted error is bounded by the sum of the corresponding values
onj. For instance, assume that we have

I b2 IN N
fl(x) = Z Z . z |_| Wn,in(xn)bil,iz,..,iN-
ililizil iN:1n:1
Then, letwy |, (x1) andw, 1, (x2) be discarded:
l1-11-1 Iy N
f200=35 5 > [Wnin(*)Biziiz...in-
1

i1=1lip=1 iNy=1n=

Then

11100 = f2(X) [, = 011, (X1) +021,(%2), @nd - max|f1(x) — f2(x)[< 011, (X1) + 021, (¥2)-

3 Computational Details

In order to catch the key idea, let the TP transformation be discussed for two variable
functionsf (x), x € R?, first.

3.1 Two variable case

The steps of the TP transformation:
(W11, W2, j=1.3,b1) = TPtransf(f (x;,x2),Q,A)

are:

Step 1)Set the transformation spa€e: [a,b1] x [az,by).

Step 2)Define a rectangular grid by values; < g11 <012 < .. <gym; <bs
andaz <gr1 < Q22 < .. < 0O2M, < bp which values define the location of grid lines.
Valuesgnm, can be arbitrary, but if there is no any specific purposes in mind then it
is recommended to locate the grid lines equidistantly. The number of the grid lines
(M1 andMy) let be defined by as: M1 = M, = % The locations of the grid lines
can automatically be generated as:

bi—a
Mi—1

b, — &
(M —1);Q2m, = 82+ —— 2 (mp — 1).

=a
O1m = a1+ My —1

Step 3)Sample the given functioh(x) over the grid points:
bry.m, = f(OLm, G2m); M=1.M1; mp=1.My,

where superscript "s" means "sampled”. Construct ma&tiz RV1*M2 from sam-
pled valuesy, m,-
Step 4)Execute Singular Value Decomposition (SVD) on maBx

BS = U;DUJ. /
SVD ! 2 ()
Let us briefly recall the theorem of SVD:

Theorem 1 (Matrix singular value decomposition (SVDEvery real valued| x
J)-matrix B can be written as the product & =U;-D- U;, in which
1.Up=|u11 ug2 --- ug|isaunitary(l x I)-matrix,

2.Uy=|uz1 Uz --- Uzg|isaunitary(JxJ)-matrix,

3. Dis an(l x J)-matrix with the properties of

(i) pseudo-diagonality:

D = diag(01,02,. . .,0min(1,3))

(i) ordering: 01 > 02 > - -+ > Opin(1,3) > 0. Theg; are the singular values @,
and the vector$)1; andUy j are, respectively, airth left and anj-th right singular
vector.

(iii) rank: the number of the non zero singular values equals the rank of matrix
B.

Therefore, the diagonal matrixof equ.: (7) contains the singular valu®s.1 minm, M)
in decreasing order, for instance (assume liak M,):

6L 0 --- O 0

D= (_) 0_2 (_) 0 e RM1xMz
oo : 0
0 0 - oy 0

Let us partition the resulted matrices as:
D" O T
_ d d
2o U (5 o) vy

Superscript "r* means "retained" and superscript "d" means "discarded". Let us re-
tain| number of singular values and discard the rest, namely, nafrixRM1—1)x(Mz-1)
and they corresponding singular vectors contained in matdgesdUy. If we dis-

card only zero singular values then we can wrigé:= U} D" (U})", where the size

of D" is | x I. If matrix DY contains nonzero singular values then:

T T min(Mq,M3)
B®~ U}D"(U,)', where the erroris: |BS—UiD" (U5)' ||, = Z Ok.
k=T}1

MatricesU} andU), are orthogonal and normalized. Therefore, the maximum error
is bounded by:
min(M1,M2)
max [BS—UID" (U%)' | < Z Ok-
elements k=T71

Step 5) Determine the basis from matrice andU5. Each colummugj_1
of matrix U] € RM1*! determines one basis function of variakle Along in the
same line, the columns of matriX, € RM2*! define the basis functions of variable
Xo. The valuesiy m, i of one column define the values of the basis functign(xy),
overxy = gimi:

W1i(g1,m1) = Utmy,i-

In order to get continuous basis function ;(x1), let the above values; m,; be
connected by straight lines. The less distance we have between gointshe
better approximation of the basis function is obtained. In other words, the greater
A we set, namely, the more dense poigigy we define the more precise basis we
obtain.

Having the basis functions we can write the TP form;

f(x) = wa(x)D'WJ (x2), (8)

where row vectorsv,(xn), n = 1..2, contain the basis functions as:

Wn(Xn) = (Wn1(Xn) Wh2(Xa) -+ Wni(Xn))-

Note that (8) is equivalent with the 2 dimensional version of (6):

B
f(x) = > wai(xa)wz,j (x2)dh
i=1]=1

wherel = J in the present case au; are the elements &@'. The piece-wise linear

basis defines bi-linear approximation, in the sense that over the rectangulars of the
grid we obtain bi-linear functions. We can conclude thak i c andD¢ has only

zero singular values then the error betwdégr) and f (x) tends to zero, which is

in full accordance with the remarks of the previous section. It is straightforward to
see that the features i)..iii) of the TP Transformation is inherited from the SVD. For
instance, i) comes from the fact tHaf U, = |, wherel is the identity matrix. ii) is
guaranteed by the SVD, since the number of the nonzero singular values is the rank
of BS. B® can not be generated by a product resulting in a matrix of lower rank. iii) is
also ensured by the SVD and piece-wise linear basis. The singular values represent
the minimal changes, in the sense of ndrp) when we decrease the rank of the
given matrix. Each singular value is assigned to one column of magrikence, to

one basis function.

3.2 MATLAB program and numerical example for two variable
case

This example is intended to illustrate how to extract the tensor product form of
function:
y=f(xi, %) = (1+x2+%1°)% 9)

Let the transformation spa€ebe defined ag; € [1,5] andx, € [1,5]. Let the grid
density beh = 25=5x 5. Let us discuss a MATLAB algorithm that computes the
steps of the TP transformation.
clear; M1=5; al=1; b1=5; M2=5; a2=1; b2=5;
%sampling
for m1=1:M1
for m2=1:M2
x1l=al+(b1-al)/(M1-1)*(m1-1);
x2=a2+(b2-a2)/(M2-1)*(m2-1);
Bs(m1,m2)=(1+xi 2 4 x2(-19)2;
end
end
% SVD
[U1,D,U2]=svd(Bs); diag(D)
input(’ number of singular values to keep =), ns=ans;
Ul=U1(;,1:ns); U2=U2(;,1:ns); D=D(1:ns,1:ns);
%creating basis functions
figure(1); plot(U1); figure(2); plot(U2);

%The resulted approximation

B=U1*D*U2’; figure(3); mesh(B);

% Reduction error

figure(4); mesh(Bs-B);

Executing this program we find that the rank of the sampled mafris three.

This program results in rough basis functions, see Figure 1, and, hence, in a rough
bi-linear approximation of the given function, see Figure 2. When we discard non
zero singular values during executing the program, we see that additional reduction
error is obtained.

Let us execute the above program with- 640000= 800x 800, so as the pro-
gram starts as:

clear; M1=800; al=1; b1=5; M2=800; a2=1; b2=5;

%sampling

When we execute the program, we see that the number of singular values is 800.
The number of nonzero singular value is three again (in order to see the first ten sin-
gular values type "diag(D(1:10,1:10))" instead of "diag(D)"). We also can see that
the basis functions are defined 80points, which is a considerable improvement,
see Figure 3. Figure 4 shows that the approximation is much improved. Note that
the number of nonzero singular values will be three even in case when we increase
A to infinity. This means that the given function can exactly be giveB k3 basis
system; we may find the basis via analytic derivations as well.

w(x) 1 w(x) |
0.5 — 0.5 — ———
0 //7 0 - -
-0.5 I -0.5
—1 -1
1 5 3 4 sy, 1 2 3 4 5 X,

Figure 1: (Extracted basis functions over 5 grid lines

3.3 Multi variable case

This subsection discusses how to calculate the transformation when the number of
variables is greater than twdl > 2. Before going into details, let as have a brief
digression here and introduce some basic tensor operations and notations. Tensor
4 € Rl2x-xIN'js anN dimensional array of values, i, iy, wherei, = 1..I, and
n=1.N.

Definition 1 (n-mode matrix of tensafl) Assume ailth order tensorq € R'1<12%--xIN,
Then-mode matrixA) € R, J = Ik, wherek=1,...,N andk # n, contains

Figure 2: (Approximation oves x 5 grid

w(x)
w3 0-6
0.4
0.2
1\ 0.2
0.1 |
i e s) N B
0 o S ——
N et S —]
N
. -0.2
01 2 3 4 5y 1 2 3 4 5y
1 2

Figure 3: (Extracted basis functions over 800 grid lines

all the vectors in thaith dimension of tensofl. The ordering of the vectors is arbi-
trary in A). This ordering shall, however, be consistently used later(8n,))j is
called anjth n-mode vector.

Let us discuss the following example: L@tbe a 3 dimensional tensor:

1 2\, 5 6).
a1 21.21= 3 4) A1.21.22= 7 8)°

A first mode matrix of7 is: A1) = <§ i ? g) A third mode matrix of4 is:
1 2 3 4) . .
Ap) = 5 6 7 8 Let us define a MATLAB program that functions with 3

dimensional tensors. Variable "d" denotes the dimension:
function B=layout(d,A)

K=size(A); I=0;
for n=1:3
ifn ~=d
I=1+1; p(l)=n;
end

end

10

S

DR e, o \5
1

0 1 2 3 4 X
Figure 4: (Example 2/B) Approximation ov800x 800grid

I=K; I(d)=1;
for t=1:K(p(1))*K(p(2))
[i(p(2)),i(p(2))]=ind2sub([K(p(1)) K(p(2))].1);

for k=1:K(d)
i(d)=k; B(i(d),)=A(i(1),i(2).i(3));
end
end

This can easily be extendedhtbdimension. For instance to 4 dimension:

type "for n=1:4" instead of "for n=1:3";

type "t=1:K(p(1))*K(p(2))*K(p(3))" instead of "t=1:K(p(1))*K(p(2))"

type "[i(p(1)).i(p(2)).i(p(3))]=ind2sub([K(p(1)) K(p(2))].K(p(3)).t)" instead of
"li(p(1)).i(p(2))]=ind2sub([K(p(1)) K(p(2))].1)"

type "B(i(d),t)=A(i(1),i(2),i(3),i(4))" instead of "B(i(d),t)=A(i(1),i(2),i(3))"

Note that any matrix of which the columns are givenrbynode vectorgA))
can readily be restored to become tengorThe restoration can be executed even
in case when some rows &, are discarded since the valuelgfhas no role in
the ordering of(A(,))j. The restoration in MATLAB can be done by the program
below. The restoration has no unique solution. Therefore, an additional parameter
of the function is introduced and termed "example". This parameter defines the size
of the restored tensor on all dimension except d.

function B=restore(d,A,example)

K=size(example);

[s,d]=size(A); I=0;

for n=1:3

ifn~=d
I=1+1; p(l)=n;
end
end
I=K; I(d)=1;

for t=1:K(p(1))*K(p(2))
[i(p(2)),i(p(2))]=ind2sub([K(p(1)) K(p(2))].1);

for k=1:s
i(d)=k; B(i(1),i(2),i(3))=A(i(d),t);
end
end

Definition 2 (n-mode matrix-tensor producilhe n-mode product of tensof €
R1xl2xxIN and a matrixU € R, as denoted by x,U, is an(ly x Iz x -+ x
In-1 X I X Iny1 X --+ x In)-tensor of which the entries are given iyx, U = B,

N
whereB(n) =U-Aq). LetAx3Up xaUz X -+ xnyUN be denoted ag1 ® U, for

n=1
brevity.

This product can be given in MATLAB as:

function C=product(d,A,B)

H=layout(d,A); F=B*H; C=restore(d,F,A);

Having these operations we can easily define the multi variable TP transforma-
tion.

Note that equ. (6) can be equivalently written by tensor operations:

N
f(X) =B ® Wn(Xn),
n=1

where row vectomwn(X,) contains the basis functiong, i1 i,(%n) as: Wn(Xn) =
(wml(xn) Wi 2(Xn) - Wn,|n(xn)). The next part shows how to transform the
multi variable functionf (x), wherex € RY.

The computational steps of TP transformation:

Step 1)Set the transformation spad®:: [a;,b1] x [ap,by] x .. X [an, bn].

Step 2)Define a hyper rectangular grid. Let the grid density of the dimensions
be defined by: M, = % n=1..N. The equidistantly located grid lines ag:m, =
an+ 8 (my — 1), my = 1My,

Step 3)Sampling the given function:

b?nl,mg,..,rm = f(gl.,mwgzmzv'ng,ﬂN); My = 1..Mp.

Step 4)Store the sampled valub§, m, _m, into tensorB® then execute HOSVD on
it: B5=B®N_,Un. In order to understand this product, let us recall the definition
of HOSVD:

Theorem 2 (Higher Order SVD (HOSVD)Every tensord € R1*12<%IN can be
written as the product

N
4=5® Uy (10)
n=1

in which

1. Up=[Urn Uzpn ... Uyl is a unitary (I x In)-matrix called n-mode
singular matrix.

2. tensors € R1xl2x--xIn whose subtensors,—q have the properties of

(i) all-orthogonality: two subtensot§,—q and.s; g are orthogonal for all pos-
sible values oh,a andp : (Si,—a, Si,—p) = 0 whena # B,

(ii) ordering: ||Sip=1|| > ||Sin=2l| > --- > ||Si,=1,/| > O for all possible values of
n.

The Frobenius nornj.Si,—i||, symbolized byri(”), aren-mode singular values of
A and the vectou; , is anith singular vectorSis termed core tensor.

The computation of the HOSVD can be done by executing SVD on each dimen-
sion of 4. Namely,U, in Eq. (10) is determined by executing SVD (Theorem 1)
on then-mode matrixA ;, of tensorA4. After discarding the singular values,
one obtains:A) = U 1Dp(L’Z)T = Up1S(n). RestoringSy into tensors,, we
have: 4 = §, xn U},. Determination olU,.1 is done in the same way. Again, let
SVD be executed on+ 1-mode matrix(Sn)(nH) of tensors, obtained in the above
step. This results in(Sy) (ny1) = UE+1,1DE+1(UE+1,2)T- Then restoring the product
of Siny1) = Dy, 4 (LH)T into tensors,, 1 we have: 4 = Sp11 XnUn Xny1 Unpa.
Repeating the above steps on each dimension leads to eq. (10). Like in the case of
SVD we can give error bound if nonzero singular values are discarded. The error is
computed by summing up all the discarded singular values in all dimension:

1B° = B, = éon,km (11)
n,

whereop, denotes thé,-th discarded singular value obtained by SVD executed
in dimensiom. More detailed discussion of HOSVD and graphical demonstrations
are given in paper [5]. Let us construct a simple MATLAB algorithm. First let us
slightly specialize the SVD function of MATLAB:

function [U,S]=psvd(A)

[U1,D,U2]=svd(A); diag(D)

input(’ number of singular values to keep =), ns=ans;

Ul=U1(;,1:ns); U2=U2(:,1:ns); D=D(1:ns,1:ns);

U=U1; S=D*U2’;

Let us define the function of 3 dimensional HOSVD as:

function [U1,U2,U3,S]=hosvd(A)

H1=layout(1,A); [U1,HN1]=psvd(H1);

Al=restore(1,HN1,A);

H2=layout(2,A1); [U2,HN2]=psvd(H2);

A2=restore(2,HN2,Al);

H3=layout(3,A2); [U3,HN3]=psvd(H3);

S=restore(3,HN3,A2);

Step 5)Define the basis functiow,; from the columns of matriceld, like in
the two variable case.

Having the basis we can write that:

f(x)§$ <§© Wn(Xn)-

~

Transformation error bound (see property iii) in Section Ill) Let functiofi(x) be
the TP representation where only zero singular values are discarde(f(x.)eue

~

derived fromf (x) where nonzero singular values rae discarded as well. Then

~ ~

mxax\f(x) —f(x)| < %Gn,kna

~
~

where oy, is from (11). Other form of the error bound igf (x) — fA(x)H._2 =
Y nk, Onk,- Both error bounds directly come form the error bound of HOSVD.

4 Conclusion

This paper presents the fundamentals of scalar TP transformation and some MAT-
LAB programs as possible implementation. We have not set any restrictions how
the functionf (x) is defined. This implies that the scalar transformation is capable
of transforming, functions given by soft computing tools, for instanceRhéas’s

type operators [6, 7, 8] based functions can be transformed as well. This would help
in fuzzy control with carrying the advantages of tRedas’sgeneral operators over

the fuzzy control technique#cknowledgementP.Baranyi is supported by Zoltan
Magyary scholarship. This work is supported by FKFP 180/2001.

References

[1] P. Baranyi. HOSVD basedTP model transformation as a way tdMl based controller design.
IEEE Trans. IE (in press).

[2] K.Tanakaand H. O. Wand:zuzzy Control Systems Design and Analysis - A Linear Matrix Inequality
Approach Hohn Wiley and Sons, Inc., 2001, 2001.

[3] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and
control theory.Philadelphia PA:SIAM1994.

[4] D.Tikk, P. Baranyi, and R.J.Patton. Polytopic arfimodels are nowere dense in the approximation
model spacelEEE Int. Conf. System Man and Cybernetics (SMG'@RP2. Proc. on CD.

[5] L. D. Lathauwer, B. D. Moor, and J. Vandewalle. A multi linear singular value decomposition.
SIAM Journal on Matrix Analysis and Applicatiqrizl(4):1253—-1278, 2000.

[6] I.J. Rudas and O. Kaynak. New types of generalized operations. computational intelligence: Soft
computing and fuzzy-neuro integrationwith applicationSpringer NATO ASI Series. Series F:
Computer and Systems, Sciende®?, 1998.

[7] I.J. Rudas and O. Kaynak. Entropy-based operations on fuzzylE&E Trans. on Fuzzy Systems
6, 1998.

[8] I.J. Rudas and O. Kaynak. Minimum and maximum fuzziness generalized operkiarzy Sets
and System®8, 1998.

