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Abstract: In this paper we characterize those uninorms which are rational func-
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Hamacher [8].
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1 Introduction

Uninorms were introduced by Yager and Rybalov [14] as a generalization of
t-norms and t-conorms. For uninorms, the neutral element is not forced to
be either 0 or 1, but can be any value e in the unit interval.

Definition 1. [14] A uninorm U is a commutative, associative and increasing
binary operator with a neutral element e ∈ [0, 1 ] , i.e. U(e, x) = x holds for
all x ∈ [0, 1 ].

Although this definition seems to be rather technical, we emphasize that
there are practical reasons behind uninorms. The first comes from multicrite-
ria decision making, where aggregation is one of the key issues. Suppose that
some alternatives are evaluated from several points of view, and each evalu-
ation is a number from the unit interval. Let us choose a level of satisfaction
e ∈ [0, 1 ] . Two semantical ways of expressing aggregation of the obtained
numbers are as follows [14]:

(i) If all criteria are satisfied to at least e-extent then we are satisfied with
any of them; else we want all of them satisfied.

(ii) If any of the evaluations is above e then we are satisfied with any of
them; else we want them all satisfied.

Such situations can perfectly be modelled by uninorms and this leads to
the particular classes introduced in [14], and also to the general forms studied
in [6].
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The second reason that supports the practical use of uninorms comes
from the field of expert systems. It is known (see e.g. [9]) that in MYCIN-like
expert systems combining functions are used to calculate the global degrees
of suggested diagnoses. A careful study reveals that such combining functions
are representable uninorms [3].

From a theoretical point of view, it is interesting to notice that uninorms
U with a neutral element in ] 0, 1[ are just those binary operators which
make the structures ([0, 1 ] , sup, U) and ([0, 1 ] , inf, U) distributive semirings
in the sense of Golan [7]. Further, in the theory of fuzzy measures and related
integrals, uninorms play the role of pseudo-multiplication [12].

Therefore, the class of uninorms seems to play an interesting and impor-
tant role both in theoretical investigations and in practical applications.

The main aim of the present paper is to characterize the class of uninorms
that are quotients of two polinomials (in other words, rational). The root of
this study goes back to the well-known results of Hamacher [8] about rational
t-norms and t-conorms. We also study the link between the underlying t-norm
and t-conorm of rational uninorms and members in the Hamacher family.

2 Preliminaries

2.1 Hamacher family of t-norms, t-conorms and negations

Let us define three parametrized families of t-norms, t-conorms and strong
negations, respectively, as follows (x, y ∈ [0, 1]).

Tα(x, y) =
xy

α+ (1− α)(x+ y − xy)
, α ≥ 0,

Sβ(x, y) =
x+ y + (β − 1)xy

1 + βxy
, β ≥ −1,

Nγ(x) =
1− x

1 + γx
, γ > −1.

Hamacher [8] proved the following characterization theorem.

Theorem 1. (T, S,N) is a De Morgan triplet such that

T (x, y) = T (x, z) =⇒ y = z,

S(x, y) = S(x, z) =⇒ y = z,

∀z ≤ x ∃y, y′ such that T (x, y) = z, S(z, y′) = x

and T and S are rational functions if and only if there are numbers α ≥
0, β ≥ −1 and γ > −1 such that α = 1+β

1+γ and T = Tα, S = Sβ and N = Nγ .
�

The above family of t-norms and t-conorms is called the Hamacher fam-
ily of t-norms and t-conorms, respectively. Note that each member of these



families is a strict t-norm resp. a strict t-conorm. Additive generators fα of
Tα are given as follows:

fα(x) =


1− x

x
if α = 0

log
(

α+(1−α)x
x

)
if α > 0

.

Members of the Hamacher family of t-norms are decreasing functions of the
parameter α.

Another characterization of the Hamacher family of t-norms with posi-
tive parameter has been obtained by Fodor and Keresztfalvi [5] as the only
solutions of a functional equation

T

(
x, 1− T (x, 1− y)

x

)
= xy, x, y ∈]0, 1],

where T is a t-norm such that the function ϕ defined by ϕ(x) =
[

∂T (x,y)
∂y

]
y=0

,

x ∈ [0, 1], is a multiplicative generator of T (that is, T (x, y) = ϕ−1(ϕ(x)ϕ(y)),
x, y ∈ [0, 1]).

2.2 Uninorms

It is well-known that t-norms do not allow low values to be compensated by
high values, while t-conorms do not allow high values to be compensated by
low values. Uninorms may allow values separated by their neutral element to
be aggregated in a compensating way.

The structure of uninorms was studied by Fodor et al. [6]. For a uninorm
U with neutral element e ∈ ] 0, 1 ] , the binary operator TU defined by

TU (x, y) =
U(e x, e y)

e

is a t-norm; for a uninorm U with neutral element e ∈ [0, 1[, the binary
operator SU defined by

SU (x, y) =
U(e+ (1− e)x, e+ (1− e)y)− e

1− e

is a t-conorm. The structure of a uninorm with neutral element e ∈ ]0, 1[
on the squares [0, e ] 2 and [e, 1 ] 2 is therefore closely related to t-norms and
t-conorms. For e ∈ ]0, 1[, we denote by φe and ψe the linear transformations
defined by φe(x) = x

e and ψe(x) = x−e
1−e . To any uninorm U with neutral

element e ∈ ]0, 1[, there corresponds a t-norm T and a t-conorm S such that:

(i) for any (x, y) ∈ [0, e ] 2: U(x, y) = φ−1
e (T (φe(x), φe(y)));



(ii) for any (x, y) ∈ [e, 1 ] 2: U(x, y) = ψ−1
e (S(ψe(x), ψe(y))).

On the remaining part of the unit square, i.e. on

E =
(
[0, e[× ] e, 1 ]

)
∪

(
]e, 1 ] × [0, e[

)
,

it satisfies
min(x, y) ≤ U(x, y) ≤ max(x, y),

and could therefore partially show a compensating behaviour, i.e. take values
strictly between minimum and maximum. Note that any uninorm U is either
conjunctive, i.e. U(0, 1) = U(1, 0) = 0, or disjunctive, i.e. U(0, 1) = U(1, 0) =
1.

The classes of continuous t-norms and continuous t-conorms are well un-
derstood [11]. Recall that any continuous t-norm is either the minimum op-
erator (the only idempotent t-norm), a continuous Archimedean t-norm (i.e.
a t-norm with a continuous additive generator), or an ordinal sum of contin-
uous Archimedean t-norms. The class of continuous Archimedean t-norms is
subdivided into two disjoint classes: the class of strict t-norms and the class
of nilpotent t-norms.

The purpose of the next section is to give an overview of representable
uninorms.

3 Representable uninorms

In analogy to the representation of continuous Archimedean t-norms and t-
conorms in terms of additive generators, Fodor et al. [6] have investigated
the existence of uninorms with a similar representation in terms of a single-
variable function. This search leads back to Dombi’s class of aggregative op-
erators [4]. This work is also closely related to that of Klement et al. on
associative compensatory operators [10]. Consider e ∈ ]0, 1[ and a strictly in-
creasing continuous [0, 1] → R mapping h with h(0) = −∞, h(e) = 0 and
h(1) = +∞. The binary operator U defined by

U(x, y) = h−1(h(x) + h(y))

for any (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}, and either U(0, 1) = U(1, 0) = 0 or
U(0, 1) = U(1, 0) = 1, is a uninorm with neutral element e. The class of
uninorms that can be constructed in this way has been characterized [6].
Consider a uninorm U with neutral element e ∈ ]0, 1[, then there exists a
strictly increasing continuous [0, 1] → R mapping h with h(0) = −∞, h(e) =
0 and h(1) = +∞ such that

U(x, y) = h−1(h(x) + h(y))

for any (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)} if and only if



(i) U is strictly increasing and continuous on ]0, 1[2;
(ii) there exists an involutive negator N with fixpoint e such that

U(x, y) = N(U(N(x), N(y))))

for any (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}.

The uninorms characterized above are called representable uninorms. The
mapping h is called an additive generator of U . The involutive negator cor-
responding to a representable uninorm U with additive generator h, as men-
tioned in condition (ii) above, is denoted NU and is given by

NU (x) = h−1(−h(x)). (1)

Clearly, any representable uninorm comes in a conjunctive and a disjunc-
tive version, i.e., there always exist two representable uninorms that only
differ in the points (0, 1) and (1, 0). Representable uninorms are almost con-
tinuous, i.e. continuous except in (0, 1) and (1, 0), and Archimedean, in the
sense that (∀x ∈ ]0, e[)(U(x, x) < x) and (∀x ∈ ]e, 1[)(U(x, x) > x).

A very important fact is that the underlying t-norm and t-conorm of a
representable uninorm must be strict and cannot be nilpotent. Moreover,
given a strict t-norm T with decreasing additive generator f and a strict
t-conorm S with increasing additive generator g, we can always construct a
representable uninorm U with desired neutral element e ∈ ]0, 1[ that has T
and S as underlying t-norm and t-conorm. It suffices to consider as additive
generator the mapping h defined by

h(x) =


−f

(x
e

)
, if x ≤ e

g

(
x− e

1− e

)
, if x ≥ e

. (2)

As an example of the representable case, consider the additive generator h
defined by h(x) = log x

1−x , then the corresponding conjunctive representable
uninorm U is given by

U(x, y) =

 0 , if (x, y) ∈ {(1, 0), (0, 1)}
xy

(1− x)(1− y) + xy
, elsewhere

and has as neutral element 1
2 . Note that NU is the standard negator: NU (x) =

1− x.
The class of representable uninorms contains famous operators, such as

the functions for combining certainty factors in the expert systems MYCIN
(see [13,3]) and PROSPECTOR [3]. The MYCIN expert system was one of
the first systems capable of reasoning under uncertainty [2]. To that end,
certainty factors were introduced as numbers in the interval [−1, 1]. Essential



in the processing of these certainty factors is the modified combining function
C proposed by van Melle [2]. The [−1, 1]2 → [−1, 1] mapping C is defined by

C(x, y) =


x+ y(1− x) , if min(x, y) ≥ 0

x+ y

1−min(|x|, |y|)
, if min(x, y) < 0 < max(x, y)

x+ y(1 + x) , if max(x, y) ≤ 0

.

The definition of C is not clear in the points (−1, 1) and (1,−1), though it
is understood that C(−1, 1) = C(1,−1) = −1.

Rescaling the function C to a binary operator on [0, 1], we obtain a rep-
resentable uninorm with neutral element 1

2 and as underlying t-norm and
t-conorm the product and the probabilistic sum. Implicitly, these results are
contained in the book of Hájek et al. [9], in the context of ordered Abelian
groups.

4 Rational uninorms

When U is a uninorm with neutral element e ∈ ]0, 1[ and with additive gen-
erator h, we have the following functional equation

h−1(x+ y) = U(h−1(x), h−1(y)) (3)

for any x, y ∈ R. This is obvious from the representation theorem.
Now we would like to study the following problem. Characterize those

uninorms U with neutral element e ∈]0, 1[ such that

U(x, y) =
Pn(x, y)
Pm(x, y)

, (4)

where Pn and Pm are polynomials of order n and m, respectively. We call a
rational uninorm proper if its neutral element is strictly between 0 and 1.

Theorem 2. Proper rational uninorms are given by the following parametric
form for (x, y) ∈ [0, 1]2 \ {(0, 1), (1, 0)}

Ue(x, y) =
(1− e)xy

(1− e)xy + e(1− x)(1− y)
, (5)

and either U(0, 1) = U(1, 0) = 0 or U(0, 1) = U(1, 0) = 1, where e ∈ ]0, 1[ is
the neutral element of Ue.

Proof. The general form of the inverses of generator functions of U having
the form (4) is presented in [1, page 61]. According to that result, we have
either

h−1(x) =
Ax+B

Cx+D
, (6)



or

h−1(x) =
A exp (cx) +B

C exp (cx) +D
. (7)

Case 1: h−1 is of the form (6).

Since we must have h−1(0) = e, it follows that B = De. On the other
hand, limx→+∞ h−1(x) = 1 implies A = C, C 6= 0. Then, however, we have

lim
x→(−D/C)+

h−1(x) = lim
x→(−D/C)−

h−1(x) = −∞,

whence h−1 cannot be increasing on R, neither continuous. Thus, there is no
proper uninorm corresponding to (6).

Case 2: h−1 is of the form (7).

Then h−1(0) = e implies
A+B

C +D
= e.

When c > 0 in (7), it follows from limx→+∞ h−1(x) = 1 that A = C,
while limx→−∞ h−1(x) = 0 implies B = 0, D 6= 0. Therefore, in this case we
must have

h−1(x) =
e exp (cx)

e exp cx+ 1− e
(x ∈ R),

and

h(x) =
1
c

ln
(
x− ex

e− ex

)
(x ∈]0, 1[).

When c < 0 in (7), similar arguments lead to

h−1(x) =
e

(1− e) exp (cx) + e
(x ∈ R),

and thus

h(x) =
1
c

ln
(
e− ex

x− ex

)
(x ∈]0, 1[).

After some easy calculations we can come up with the formula in (5).

5 Relationship between the class of rational uninorms
and the Hamacher family of t-norms and t-conorms

In this section we determine the underlying t-norm and t-conorm for the
rational uninorm Ue in (5).



According to the general case explained in the previous subsection, both
TUe

and SUe
have additive generators denoted by f and g, respectively. More-

over, we have by (2) that

f(x) = −h(ex) (x ∈]0, 1]), (8)
g(x) = h(e+ (1− e)x) (x ∈ [0, 1[). (9)

Thus, we have

f(x) = −1
c

ln
(

1− ex

x− ex

)
(x ∈]0, 1]), (10)

f−1(x) =
1

e+ (1− e) exp (−cx)
(x ∈ [0,∞[ ), (11)

whence

TUe(x, y) =
(1− e)xy

1− e(x+ y − xy)
(x, y ∈ [0, 1]).

It is obvious that thus obtained TUe
belongs to the Hamacher family of

t-norms with parameter α =
1

1− e
.

One can obtain in a similar way that

SUe
(x, y) =

ex+ ey + (1− 2e)xy
e+ (1− e)xy

(x, y ∈ [0, 1]).

Therefore, SUe
belogs to the Hamacher family of t-conorms with param-

eter β =
1− e

e
.

Finally, the parameter in the formula of the rational strong negation which
stands in the De Morgan triplet is given by γ = 2− 1

e .

6 Conclusion

We have completely characterized rational t-norms. Relationships between
the parameters of each rational uninorm and those of its underlying t-norm
and t-conorm have also been determined.
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