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Abstract: The detection of tool failure is crucial point in intelligent 
manufacturing. The lifetime of large cutting tools can be forecasted but the failure 
of small sized tools is nearly unpredictable. A number of signatures accompanying 
excess wear or emerging failure are investigated. The application of sensor fusion 
by means of neural networks to the monitoring of small drills is described and the 
experimental results are discussed.  
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1. Introduction 
Various methods for tool wear sensing have been proposed and evaluated in the past 
but none of them proved to be universally successful due to the complex nature of the 
cutting processes. The applied indirect methods suffer from the fact that not only the 
wear but other process parameters also influence the measurement results. These are 
the workpiece and tool materials, the geometry of the cutting tool and the 
technological parameters: cutting speed, feed and depth of cutting.  

 

Since approximately 40% of the machining operations are drilling operations, the 
monitoring of the drill condition is an important task. This is especially true for twist 
drills that are mostly used in producing holes in the 1-20mm diameter range. The 
economic importance of the task is emphasised by the large scatter of the tool life of 
small twist drills. 

 

2. Monitoring of the drilling process 
Tool wear and tool breakage are two important aspects of the metalcutting process 
that are not well understood. Tool wear has a strong effect on both the dimensional 
accuracy and the surface finish of the workpiece. Wear can reach values that lead to 
catastrophic failure of the tool, resulting in high forces which in turn may damage the 



workpiece or even the machine tool. This fact stresses the importance of tool 
monitoring. 

 

Tool failure is a sudden event, that needs to be predicted in due course in order to 
prevent any major damage resulting in economic losses. In drilling, the wear pattern 
changes along the cutting edge, due to the differences in the drill bit geometry and 
due to the differences of the cutting conditions along the cutting edge. Brinksmeier[3] 
has classified drill wear into seven types: the outher corner wear, the flank wear, land 
wear, crater wear, two types of chisel edge wear and chipping on the cutting edges. 
Out of the various wear patterns the outer corner wear is considered as the most 
appropriate performance index of drill life [2]. 

 

It is evident that the wear characteristics cannot be measured directly in the process. 
Therefore, only indirect measuring methods can be applied. Increasing wear at the 
outher corner or margins excite torsional vibration in the worn drill, causing a 
periodic change in the length of the tool due to its spiral form, resulting in chip 
thickness variation. The cutting speed at the outher corners of the vibrating drill is 
several times higher than in a stable process. The wear-induced vibration can be 
detected using acoustic emission sensors. 

 

3. AE signal in the cutting process 
The term acoustic emission (AE) refers to the elastic stress wave generated as a rapid 
release of strain energy within a solid material in association with the deformation 
and fracture generated during metalworking processes. It was rediscovered by 
manufacturing engineers as a very promising signature to detect an emerging tool 
failure. The distinct sources of acoustic emission can be identified in metal cutting as: 

(1) plastic deformation and shear of work material 

(2) deformation and sliding friction at the chip-tool  surface 

(3) sliding friction at the tool flank-workpiece interface and 

(4) chip breaking and their impact on the cutting tool or workpiece 

(5) normal and abnormal wear of the tool 

(6) mechanical and thermal crack of the tool 

 

There are two types of acoustic emissions: the high amplitude, somewhat erretic, low 
frequency type called the burst emission which is generally associated with surface 
events, such as slip line formation and surface microcracks and the lower amplitude, 



steady and high frequency type called continuous emission that is generally 
associated with internal mechanism activity. 

 

In recent years many researchers have investigated AE signals from metal cutting 
processes and their feasibility for in-process monitoring of tool conditions. The 
majority of the publications deal with the monitoring and supervision of turning and 
milling. One important goal of studying the AE from metal-cutting processes has 
been understanding the toolwear related AE variations and evaluating their capability 
for in-process monitoring of the tool condition. Two possibilities have been 
identified. One is the increase of the level AE energy (the RMS value of the signal) 
with increase of the flank wear. The otherone is the increase of the density and event 
counts (the number of events) exceeding a certain threshold.  

 

 Iwata and Morikawi[17] observed that the RMS voltage of the AE signal increased 
significantly as the carbide tool wore during the machining of carbon steel workpiece. 
They reported that flank wear has a more significant effect on the average RMS value 
than the change of cutting speed. Later it was found that cutting speed has a major 
influence in increasing the average RMS level and that the magnitude of the average 
AE signal increases abruptly as the tool wear penetrates through the coating of coated 
tools. 

 

The relationship between the mean value of the AE signal and the flank was also 
studied by Kannetey-Asibu and Dornfeld[13]. They observed that the AE level 
change decreases or stops when the flank wear reaches some intermediate value. This 
phenomenon was attributed to the rapidly developing crater wear. Therefore they 
suggested the skew of the statistical distribution of the RMS value as a better 
indicator of the tool wear. Another interesting observation of this group was that the 
frequency spectrum contains dominant frequencies at 80 and 150 kHz and that the 
power spectrum amplitude at these frequencies increases with the tool wear. 

 

Inasaki and Yonetsu[9] have found that the AE amplitude is independent of the depth 
of cut and the feed per revolution but increases continuously with the increasing 
cutting speed. For constant cutting speed, AE increases approximately linearly with 
the flank wear over the whole range of the cutting speed. The authors reported that 
the flank wear estimated using the AE signal and the optically measured values 
showed very good agreement, with less than 15% deviation. 

 

König, Ketteler and Klumpen[14] studied acoustic emission for turning, drilling and 
milling as function of tool wear. They observed an increased AE activity over the 



whole spectrum as the tool wore and a typical steep increase was found at the end of 
the tool life. 

 

Tool wear has also a significant effect on the density of pulse events in the AE signal. 
Iwata and Moriwaki[10] observed that the pulse count per cut increases with 
increasing flank wear up to about 120um and remained constant above that, but the 
data showed a significant degree of scatter. Inasaki and Yonetsu[9] found sudden 
increase in the even count rate after a tool developed extensive flank wear and at the 
same time an increase in the standard deviation of the count rate at this point. This 
phenomenon was attributed to the development of microcracks in the tool. Although 
the pulse event count seems to be well correlated to flank wear, many problems 
inhibit the usage of this relationship in process monitoring. The major problem is that 
a system based on this principle has to be calibrated for each specific machining 
condition and the selection of the threshold level for the pulse event count is 
somewhat arbitrary. 

 

Tool fracture results in a sudden increase of the AE amplitude as it was already 
observed by Inasaki and Yonetsu[9]. Analysis of the data from cutting experiments 
using various speeds, feeds and depth of cuts also showed that the ratio of the AE 
amplitude before and after the breakage exceeds 1.8. Using this ratio they were able 
to detect edge chipping with fracture are of about 0.1mm2. In case of significantly 
worned tool this shift decreases. However by filtering out the frequencies below 
300kHz the effect of wear can be reduced and even the detection of microcracks was 
reported.  

 
4. Signal processing and sensor fusion techniques 
Automatic monitoring of the manufacturing processes relies on signal processing. 
Fast Fourier Transform (FFT) and spectral analysis are the most commonly applied 
frequency domain signal processing techniques in engineering. However FFT has 
many weaknesses. The first one is that the frequency resolution of the entire 
frequency spectrum depends on the sampling frequency and the number of data 
points. The second weakness is representation of the entire spectrum, with the 
addition of harmonic signals, by assuming that the data window is repeated 
indefinitely. A third weakness is the existence of considerable noise in the 
transformation due to the large degree of freedom of the system. Therefore FFT 
analysis has to be repeated many times and their result must be averaged in order to 
get a smooth output. 

 



The time series methods have been proposed to overcome the shortcomings of the 
FFT and to have a forecasting capability. This approach estimates a difference 
equation that represents the stochastic characteristics of the signal. The dominant 
frequencies can be computed from the estimated model without having any 
dependence between the resolution and the number of datapoints. Mainly the order of 
the difference equation is less than half of data set's size. The main disadvantage is 
that time series techniques can not identify transition points in the signal within the 
data window. In order to estimate transition in a given system a forecast over one or 
several steps can be made and the accuracy of the estimation evaluated. A 
considerable change of the estimation accuracy indicates transition in the system.  

 

Obvious solution for fusion of sensory signals is the artificial neural network. It 
consists of a number of identical processing units usually structured in two to four 
layers. The fundamental processing element is the perceptron, which calculates the 
weighted sum of its input, and passes the result through a non-linear threshold 
function. The threshold function can be a simple signum function, a hyperbolic 
tangent or the sigmoid. The non-linear behaviour of the threshold function allows a 
neural network to extend the reach of pattern classification capabilities into the 
domain of generalised non-linear functions. 

 

The neural network structure used in our investigations was a multilayer feed-forward 
neural network that uses the backpropagation learning algorithm. The input layer has 
one node for each feature extracted from the raw signature. The output layer, where 
the classification emerges, consists of one or more perceptrons. The actual number of 
output nodes depends on the number of possible classes in the data set as well as on 
the way the different classes are coded. For instance one output node is needed for a 
twoclass problem if output value +1 corresponds to the first class and output value -1 
to the second class. In problems that involve a larger number of classes one output 
node will be assigned to each class or a binary coding will be applied. Layers 
between the input and output layers are called hidden layers. Between the various 
nodes there are weighted connections through which the processing unit 
communicate with each other. 

 

The neural network described above represents a complex non-linear function. The 
learning algorithm adjusts the parameters of the non-linear function, by modifying the 
weights of the connections, until the classification error is minimised. There are two 
important situations in which a neural network is particularly useful. The first case is 
when non-linear decision function is needed to separate two classes of data from each 
other. The second case is when the data neglects the normality conditions. 

 



The earliest effort for integrating information from several sensors to monitor 
machining performances is the work by Matsushima and Sata[16]. Their objective 
was to automatically recognise the cutting state and detect tool failure. A linear 
discriminant function was used to integrate the cutting parameters, speed and feed 
rate, with features from the power spectrum of the cutting force. Dornfeld and Pan[5] 
applied linear discriminant functions to integrate event rate from an AE sensor with 
the machining parameters to detect chip formation during turning. Balakrishnan[1] 
used a discriminant function technique to combine cutting force and acoustic 
emission for tool monitoring. The majority of these approaches suffer from the time 
consuming training procedure and the high sensitivity to process conditions. 

 

Application of neural network in monitoring metalcutting processes was first 
proposed by Rangwala and Dornfeld[]. They used a back-propagation network to 
classify sharp and worn tools in turning. The state of the tool was divided into two 
classes: sharp with wear land less than 0.25 mm and worn where the wear was 
between 0.5 and 0.75 mm. They sampled the force and the AE signals simultaneously 
at a rate of 1kHz and 5MHz respectively. The power spectral density of the signal 
was found by calculating the square of the absolute of FFT of the sensory signals. 
The network was used as learning and pattern recognition device, and was able to 
successfully associate sensor signal pattern with the appropriate decision on tool 
wear. The neural network was able to filter out noise in the sensor data and this 
enhanced their ability for successful pattern association tasks over a wide range of 
machining conditions. Chryssolouris and Domroese[5] performed simulation in order 
to assess the learning capabilities of these networks as the decision-making 
component in a tool condition monitoring system. Choi[4] demonstrated the 
feasibility of a neural network in real-time tool wear monitoring. Noori-Khajavi and 
Komanduri[18] measured the torque and the thrust force in drilling and fused features 
extracted from these signals to classify the tool state.  

 

Jammu[11] applied a single category-based classifier to detect tool failure in turning. 
They used the RMS value of ultrasonic energy, low frequency vibrations in X and Y 
directions, the X and Z feed motor currents and the coefficients of the ARX model for 
the velocities as input signals to the network. Various network structures (SCBC, 
ART2, Kohonen) have been compared from the point of their effectiveness. 

 

5. Experimental setup and data collection 
The experimental set-up for evaluating the proposed on-line tool monitoring system 
was built around a conventional milling machine. The acoustic emission and the 
vibration were captured respectively by an AKL 85 sensor (equivalent to  of 
Bruel&Kjaer) and a KD 91 broadband sensor having 0.4 mV/m.s2 sensitivity and a 



resonance frequency around 50 kHz attached to the workpiece within 50 mm distance 
from the actual cutting zone.  The signals were amplified by charge amplifiers 
(models and 2635). For measuring the feed force a Kistler dynamometer (type ) was 
used and its signal was again amplified by a Kistler charge amplifier (type). 

 

The acoustic emission signal was directly processed by a Krenz broadband 
spectrumanalyzer with 2MHz bandwidth and at the same time the RMS value was 
sampled by a data acquisition board on an IBM personal computer. Also the force 
and vibration signals were processed using the same data acquisition board, but with 
a much lower sampling rate. 

 

 
 

Fig.1. AE spectrum of sharp and worn 1.5mm diameter twist 
drill (material KO36 feed 25mm/min, 2500 rev/min) 



 

The first series of experiments aimed at finding appropriate features for tool wear and 
failure detection. It was assumed that the torsional vibration described in paragraph 
result in dominant frequencies in both the AE and the low frequency spectrum. The 
experiments showed the correctness of our assumption. The power spectrum of the 
AE signal has a dominant frequency around 80 kHz and shows dramatic increase at 
the end of the tool life. One can also notice the appearance of a new peak at 100 kHz 
in the spectrum of the worn tool (Fig.1). 

 

The experiments showed no significant influence of the cutting parameters and the 
workpiece material on the place of the dominant frequencies in the AE spectrum, 
only their amplitude was effected. 

 

We also investigated the behaviour of the low frequency vibration signal as function 
of the tool wear. Here we have found a rather similar pattern signalling excessive tool 
wear and tool failure. As it can be seen in Fig. 2 there is a dominant frequency in the 
spectrum in the neighbourhood of 8 kHz. The amplitude of this peak shows close 
correlation with the condition of the tool.  Moreover it was found that the frequency 
of this peak is independent of the machining parameters (revolution, feed) and the 
material of the workpiece. 

 
Fig.2. Vibration spectrum of a 1.5 mm twist drill 

(material K036, feed 25mm, 2500 rev/min) 



 

 The third signal measured during the machining experiments was the feed force. In 
the subsequent figures the AE average value is given together with the value of the 
feedforce. One can notice the increase of the AE activity as the tool wears. This trend 
in the AE activity can be observed even after the toolbreak when the force falls back 
to a low value.  

 
Fig. 3. AE activity and feedforce during tool failure 

However at the end of a cut similar signature can be observed even under normal 
cutting conditions. This can lead to incorrect recognition of the tool conditions. To 
avoid recognition mistakes, information about the signal trend is incorporated in the 
decision process. 

 

6. Signal processing 
Through signal processing the envelope of the AE signal was derived by band pass 
filtering, full wave rectifying and averaging. The processed AE signal reflects tool 
breakage’s, but also contain other events that can be mistaken for tool failure. If AE 
signal used by itself for tool breakage detection it would produce an unacceptable 
number of false alarms, depending on the threshold level. The number of false alarms 



can be reduced by increasing the threshold level, but the system may miss some of 
the tool breakages. 

 
Fig.4. The processed AE signal in case of tool failure 

 

 The amplitude of lower frequency vibration is also sensitive to tool failure. The 
vibration signals in the 5-8 kHz range can also be effectively used for monitoring the 
tool condition. However this signal alone would also lead to some missrecognitions. 

 

Feedforce is used already for a long time as a signature for detecting tool failure. The 
specific signal pattern associated with tool breakage can be recognised with simple 
means. However any changes in the cutting load due to different cutting variables, 
hard spots, chip entanglement etc. will manifest itself in the signal on a rather similar 
way. This type of noise may be significant when machining parts with complex 
geometry. In order to reduce the effect of this noise we have introduced a fourth order 
ARMA model and used its residuals as features for detecting tool failure. 

 

7. Detection results 
In our experiment for sensor fusion two types of networks has been used: multilayer 
feedforward network and the single category based classifier which is actually a 
weighted majority based decision-maker. The following tables summarise the correct 
recognition rates, that was achieved, by the two networks with various sensor fusion 
during the experiments. 



Sensor Combination Correct Recognition Rate 

RMS AE + Force 94% 

RMS AE + Vibration 72% 

Vibration + Force 85% 

Table 1. Correct recognition rate of the multilayer feedforward network 

 

Sensor Combination Correct Recognition Rate 

RMS AE + Force 96% 

RMS AE + Vibration 75% 

Vibration + Force 89% 

Table 2. Correct recognition rate of the single category based classifier 

 

Number of Input Features Correct Recognition Rate 

2 94% 

4 96% 

6 96% 

8 82% 

Table 3. the influence of the number of input features on the correct recognition rate 
is given in case of a single category based classifier. 

  

8. Conclusions 
An on-line drill wear/failure monitoring system was developed and evaluated in this 
study. On the basis of this investigations the following conclusions can drawn: 

• By applying a neural network in combination with an AR time series model a 
considerable improvement in the correct tool condition recognition rate can be 
achieved. 

• The AE RMS + Force signal based tool wear detection system is insensitive to 
the changes of the cutting conditions and can operated over a wide range of 
cutting parameters. 



• It was recognised that for tool wear detection a relatively small neural network 
works well. 
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