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Abstract: The purpose of the paper is to present a method for risk-sensitive 
minimum variance control of stochastic discrete-time linear systems with the 
gaussian system and measurement noise models, which connects control pair 
(u(i),x(i)) conditional density optimization, optimal control law solving and risk-
neutral control gain specification. The basic idea consist in determination of the 
join covariance matrix  T of the mentioned control pair, combined with the risk-
parameter setting, which represents the amount of risk in the control policy.  
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1 Introduction 

For linear systems, the optimal control problem reduces to a linear quadratic 
regulator (LQ) problem, whose solution can be obtained by solving an algebraic 
Riccati equation. It is well-known fact that linear quadratic optimal control yields 
a stable closed-loop system and the minimal value of the performance index. The 
disadvantage, however, is that the performance of this controllers is degraded in 
the presence of system parameter deviations.  

The approach, to be presented in this paper, translates the control problem into an 
risk-sensitive generalization of minimum variance optimal control with emphasis 
on optimal control gain selection. The solution to the optimal control problem is 
then a solution to the optimized conditional join density function of control pair 
(u(i),x(i)) under system and measurement noise and discrete-time Kalman filter 
realization. This is motivated by the need for robustness in the widely used (risk-
neutral) minimum variance control, including adaptive control and risk neutral 
control is presented as the risk sensitive parameter approaches zero. An interesting 



point is that presented control has the essential structure of a standard LQ 
controller. 

2 Problem Formulation 

Many different methods can be used in the control design of stochastic linear 
multi-variable systems with the discrete-time state-space description 

( 1) ( ) ( ) ( )i i i i+ = + +x Fx Gu v    (1) 

( ) ( ) ( )i i i= +y Cx o     (2) 

where x(i), u(i) and  y(i) are the state, input and output vectors, respectively, F, G  
and C are matrices of appropriate dimensions, v(i), o(i) are gaussian noises. If  
couple (A, B) controllable, there exist several approaches to the determination of 
the control matrix K in static output feedback 

   ( ) ( )ei i= −u Kx      (3) 

subject to (1), (2), with a state-variable vector estimate at time point i in 
dependence on all the values {y(j) :  j = 0,1,2, … ,i }of signal and noise up to time 
point i. 

It is supposed in the next that the actual estimate error  

   ( ) ( ) ( )ei i i= −e x x     (4) 

is gaussian, with expectation E{e(i)}= 0, covariance P(i), and density function 
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and the density functions of the system noise sequence {v(j) : j = 0,1,2, … } and 
the measurement noise sequence {o(j) : j = 0,1,2, } are 

11( ) exp( ( ( ) ( ))
2

T
vf i K i a i−= −V v v v    (6) 
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respectively. 

The risk-sensitive minimum variance control design task is, in general, for a 
system described by (1), (2) to determine such control law (3) that minimizes the 
cross-covariance of the join density function 
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Here, b < 0 is a real number and represents the amount of risk in the control 
policy. 

This problem is a special case of one-step-ahead prediction considered as the risk-
sensitive generalization of minimum variance control. 

3 Measured noise Orthogonalisation 

The optimal control condition (8) can be solved analytically in the linear model 
case. Thus considering the model (1), (2) the density function (9) can be rewritten 
as 
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where joint vector variable is a vector  z(i) with components formally arranged in 
the form 

                (11) ( ) [ ( ) ( ) ( ) ( )]T T T T Ti i i i=z u x v o

Using this notation the criterion (8) can be reformulated as 
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where 
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As a consequence of gaussian properties it follows that 
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and 

               (17) 1
1 1 1( ), ,T

oo ox x xb a b b−= − = =W W C W

The marginal density function of measurement noise is then 
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and the conditional density function of reduced random vector variable can be 
constructed  as 
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where 

  1( ) ( ) ( ) ( )i i i i= + +x Fx Gu v                (20) 
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4 System noise Orthogonalisation 

To solve the problem of minimal covariance the conditional expectation can be 
accepted as zero and thus, by combining  (17) and (18), optimized join density 
function criterion (12) can be modified as 
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where 
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Thus, applying completing arguments, as in derivative of measurement noise 
orthogonality, the value is 
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The marginal density function of measurement noise is then 
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and the conditional density function of reduced random vector variable can be 
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0 1 1

1 1
1 0 0

1( ( ) | ( ), ( )) exp( ( ))
2

1exp( ( )( ( ) ) ( ))
2

T
x

T
x

f i i i K i1

K i a− − i

= =

= − −

X 0x v o x Wx

x V V V I V x
                    (29) 

where 

      0 ( ) ( ) ( )i i i= +x Fx Gu                         (30) 
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5 System state Orthogonalisation 

By the same way as in the last two sections the joint density function (22) can be 
reformulated as 
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The value  (35) can be expanded as 
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thus 
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The marginal density function of system state is then 
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and  the conditional variances  are 
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Thus, the conditional density function of  new vector variables is 
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5 Control Optimality 

Assumption that the system state variable vector is fully filtered implies that the 
joint density function (32}) can be transformed to the next form 
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The value of exponent for fully filtered system state vector is characterized by the 
relation 
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thus 
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Once the matrices are determined, the optimal control law (3) is completely 
described by next equation 
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a is the value of variance of the system noise and measurement noise and b < 0 is 
a real number representing the amount of risk in the control policy. 



Concluding Remarks 

The paper gives some background material on formulation of risk-sensitive 
minimal variance control, using join density function of control signal, system 
state, estimation error, system noise and measurement noise. The basic idea 
consist in determination of the join conditional covariance matrix T of the control 
vector and estimated system state vector, combined with the risk-parameter 
setting, which represents the amount of risk in the control policy. 

The importance of selecting an information-state-oriented performance index has 
been demonstrated, where present study has indicated, that the used approach is 
robust in risk-sensitive sense and nominal in the risk-neutral sense. In the small 
noise limit the control is optimum for a solution with worst case noise. 
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