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Abstract- Information aggregation is one of the key issues in development of 
intelligent systems. Although fuzzy set theory provides a host of attractive aggregation 
operators for integrating the membership values representing uncertain information, 
the results do not always follow the modeled real phenomena. Researches on this area 
have shown that better results can be reached by using various aggregation operation 
families. In this paper some new approaches towards the generalizations of the 
conventional triangular norms are summarized. It is shown that by omitting and/or 
modifying some axioms in the axiom skeleton new generalized operation families can 
be obtained. The paper summarizes some new operations, including novel parametric 
generalized operations, absorbing-norms and distance-based operators. 
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1 Introduction 
Many applications of fuzzy set theory, such as fuzzy logic control, fuzzy expert 
systems and fuzzy systems modeling involve the use of a fuzzy rule base to model 
complex and approximately or not well-known systems. Information aggregation is 
one of the key issues in these systems. Although fuzzy set theory provides a host of 

mailto:rudas@bmf.hu


attractive aggregation operators for integrating membership values representing 
uncertain information the research on this area is still not completed. 

Since the pioneering work of Zadeh the basic research was oriented towards the 
investigation of the properties of t-operators and also to find new ones satisfying the 
axiom system. As a result of this a great number (of various type) of t-operators have 
been introduced accepting the axiom system as a fixed, unchangeable skeleton. Until 
the last few years no strong efforts were devoted to generalize t-operators by 
modifying, “weakening” these axiom system.  

In this paper a survey of some new approaches towards the generalization of t-
operators is given. Some of the axioms is analyzed from the point of view of their 
necessity. First the questions of commutativity and associativity are discussed. And 
some examples of non-commutative and non-associative operations are given. 

By modifying the neutral elements of t-norm and t-conorm with an arbitrary number 
from the unit interval, the concept of uninorm is received. As a kind of complement of 
uninorms a new, not necessarily monotone operation, the absorbing-norm is 
introduced, and their structure and properties are discussed. 

The replacement of the neutral element with certain boundary conditions leads to the 
concepts of conjunction and disjunction operations and also their weakest forms, to the 
quasi- and pseudo-operations. The generation of these operations is outlined. Based on 
these theorems some new parametric classes of generalized operations are introduced. 

The distance-based operations are generalized operations. Their properties and 
structures are discussed in the last part of the paper. 

2 T-Operators 
[0,1][0,1][0,1] : →Definition 1 A mapping ×T  is a t-norm if it is commutative, 

associative, non-decreasing and , for all [ ]1 ,0∈xxT = )1,( x

[0,1][0,1][0,1]: →

. 

×Definition 2 A mapping S  is a t-conorm if it is commutative, 
associative, non-decreasing and , for all [xxS = )0,( ]1 ,0∈x

[0,1] : →N

. 

Definition 3 A mapping  is a negation, if it is non-increasing and 
N(0) = 1 and N(1) = 0. 

[0,1]

N is a strict negation if N is strictly decreasing and N is a continuous function. N is a 
strong negation if N is strict and N(N(a)) = a, that is, N is involutive. 



Further it is assumed that T is a t-norm, S is a t-conorm and N is a strict negation. 

T-norms and T-conorms can be obtained from each other as follows:  

  and ( ) ( ) ( )( )( )yNxNTNyxS ,, = ( ) ( ( ( ) ( )))yNxNSNyx ,,T = . (1) 

The simplest examples of T-norms and T-conorms mutually related by means of 
negation N(x) = 1 - x are the followings 

( ) ( )yxyxM ,min,T =   Minimum    

( ) ( )yxyx ,max,SM =  Maximum    

( ) xyyxTP =,  Product  
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Strongest t-conorm    

⎩ otherwise,1

Generally, for any T-norm T and T-conorm S  

( ) ( ) ( )yxSyxSyxSyxTyxTyxT SMMW ,,,,,, ≤ ≤ ≤≤≤

W MT
S SS

 (2) 

i.e. T-norms T  and  are the minimal and the maximal boundaries for all T-norms, 
respectively. Also T-conorms M  and  are the minimal and the maximal 
boundaries for all T-conorms, respectively. These inequalities are important from 
practical point of view as they establish the boundaries of the possible range of 
mappings T and S. 

Parametric fuzzy connectives form also important class of t-operators. Three examples 
of parametric t-norms  

p pppp yxyxyxT )1()1()1()1(1),( −−−−+−−=  (Schweizer and Sklar), 



))1()1(,1min(1),( p pp yxyxT −+−−=

( ) ( ) ( )( ) ⎟⎞⎜⎛ −+−+=
ppp yxyxT

/1
1/11/11/1,

 (Yager), 

⎠⎝
 (Dombi). 

3 The Commutative and Associative Axioms 
One possible way of simplification of axiom skeletons of t-operators may not be 
requiring these operations to have the commutative and the associative properties. 
Non-commutative and associative operations are widely used in mathematics, so; Why 
do we restrict our investigations by keeping these axioms? What are the requirements 
of the most typical applications? 

From theoretical point of view the commutative law is not required, while the 
associative law is necessary to extend the operation to more than two variables. In 
applications, like fuzzy logic control, fuzzy expert systems and fuzzy systems 
modeling fuzzy rule base and fuzzy inference mechanism are used, where the 
information aggregation is performed by operations. The inference procedures do not 
always require commutative and associative laws of the operations used in these 
procedures. These properties are not necessary for conjunction operations used in the 
simplest fuzzy controllers with two inputs and one output. For rules with greater 
amount of inputs and outputs these properties are also not required if the sequence of 
variables in the rules is fixed. 

Moreover, a non-commutative T-norm may in fact be desirable for rules, because it 
gives us the possibility of taking into account the different character of influence of the 
error and the change in error on the output variable. So, if the commutative T-norm 
implies equality of rights of both operands, then the non-commutative operation with 
fixed positions of operands gives the possibility to build context dependent operations. 
Some examples for parametric non-commutative and non-associative operations will 
be given. 

4 The Axiom of Neutral Element 
For the generalization of triangular norms there are two ways. Uninorms, introduced 
by Yager and Rybalov in 1998 [5] are a kind of generalizations of t-norms and t-
conorms where the neutral element can be any number from the unit interval. The 



other approach is the replacement of the neutral element with so called “boundary 
conditions”. 

4.1 Uninorms 
Uninorms are such kind of generations of t-norms and t-conorms where the neutral 
element can be any number from the unit interval. The class of uninorms seems to play 
an important role both in theory and application [5], [6], [7]. 

Definition 4 [5] A uninorm U is a commutative, associative and increasing binary 
operator with a neutral element [ ]1,0∈e , i.e. [ ]( ) 1,0 ,, = ∀ ∈xxex

( ) ( ) ( )

U . 

The neutral element e is clearly unique. The case e = 1 leads to t-conorm and the case 
e = 0 leads to t-norm.  

The first uninorms were given by Yager and Rybalov [5]  

[ ]
( )⎪⎩

⎪
⎨
⎧ ∈

=
elsewhere,min

1 ,, if,,max,
2

yx
eyxyxyxU c  (3)  
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( ) ( ) ( ) [ ]⎪⎧ ∈
=
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2eyxyxyx 
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elsewhere,,max yx
U d

cU
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 is a conjunctive right-continuous uninorm and  is a disjunctive left-continuous 
uninorm. 

dU

Regarding the duality of uninorms Yager and Rybalov have proved the following 
theorem [5]. 

Theorem 1 Assume U  is a uninorm with identity element e, then 
)1,1(1),( yxUyxU −−−= e is also a uninorm with neutral element −1 . 

4.2 Nullnorms 
[0,1][0,1][0,1]: →Definition 5 [6] A mapping ×U  is nullnorm, if there exists an 

absorbing element , i.e., [ ]1,0∈a [( ) ]1,0 ,, = ∀xaax

( )

∈V , V is commutative, V is 
associative, non-decreasing and satisfies 

[ ]axx  ,0 allfor  xV 0, ∈  (5)  =



[ ]( ) 1 , allfor  1, axxxV ∈= . (6) 

4.3 Absorbing-norms 
Absorbing-norms are generalizations of null norms introduced by Rudas [8]. 

[0,1][0,1][0,1]: →Definition 6 Let A be a mapping ×U . A is an absorbing-norm, 
if it is commutative, associative and there exists an absorbing element [ ]1,0∈a , i.e., 

. ( ) [ ]1,0 ,, ∈∀= xaaxA

( )  ,, aaaA =It is clear that a is an idempotent element hence the absorbing element is 

unique. If there would exist at least two absorbing elements 212 , , aaa1  ,a ≠  for 

which ( ) ( ) 221121 ,  and  ,, aaaAaaaA == 21, aa, so thus = . 

T-operators are special absorbing-operators, namely for any t-norm T, 
 and for any t-conorm S, ( ),0 =xT [ ]0,1x ,0 ∈∀ ) [ ]0,1x ,( 1,1 ∈∀=xS

ax

. 

As a direct consequence of the definition we have if ≤  then 
, if  then ( ) ( )axaax ,max, == ( ) ( )ax,minA ax ≥ aaxA , = = . 

These properties provide the background to define some simple absorbing-norms. 

[ ] [ ] [ ]0,1→The trivial absorbing-norm 0,10,1 :T

( )

A  with absorbing element a is  ×

[ ] [( ) ]1,01,0yx, ,yx, : ∀ ∈ ×→ aAT . (7) 

[ ] [ ] [ ]0,10,10,1 :min →×ATheorem 1 (Rudas [8]) The mapping  defined as  
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,0,0, if,,max
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yxA

[ ] [ ]

 (8)  
elsewhere

[ ]  defined as and the mapping 0,10,10,1 :max →×A

( ) [ ] [( ) ( ) ]
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⎨
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=
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1 ,1 ,, if,,min
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aayxyx
yxA

maxA

( ) ( ) ( ) 00,11,00,0 minminmin === AAA

 (9)  

are absorbing-norms with absorbing element a. 

Corollary 1 From the structure of  and  the following properties can be 
concluded: 

minA

( ) 00,0min, =A , 



( ) 11,1max( ) ( ) ( ) 10,11,01,1 maxmaxmax === AAA , =A

maxA

. 

With the combination of ,  and  further absorbing-norms can be defined. minA TA

[ ] [ ] [Theorem 2 (Rudas, [8]) The mapping ]0,10,10,1 : →×

( )
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⎧ ×∈
=

,0,0, if,
,min

aayxa
yxAa

[ ] [ ]

 (10) 

[ ]  defined as 0,10,10,1 :max →×aAand the mapping 

[ ] [( ) ( ) ]×∈ 1 ,1 ,
max
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,

yx
yxa
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are absorbing-norms with absorbing element a. 

Theorem 3 (Rudas [8]) Assume that A is an absorbing-norm with absorbing element 
a. The dual operator of A ( ) ( )yxAyxA −−−= 1,11,

( )

 is an absorbing-norm with 
absorbing element 1-a. 

Definition 7 

( ) ( ) [ ] [( ) ]
( )⎩

⎨
⎧

=
elsewhere,max

,
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min yx
yxA

×∈ ,0,0, if,,min aayxyx
  (12) 

( ) ( ) ( ) ( ) [ ] [ ]
( )⎩
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,
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aayxyx
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We have received the first uninorms given by Yager and Rybalov. 

Due to the constructions of these operators for the pairs ( )dUA  ,min ( and )cUA  ,max

minA maxA

 
the laws of absorption and distributivity are fulfilled. 

Let us define a kind of complements of  and  replacing the operator min 
with max and the max with min as follows. 

( ) ( )Theorem 4. For the pairs dUA  ,min  and cUA  ,max

( )( )

 the following hold  

1 Absorption laws 

[ ] 1,0  allfor   ,,min = ∈xxxzxUA d , (14) 

( )( ) [ ] 1,0  allfor   ,,min ∈= xxxzxAU d , (15)  



[( )( ) ] 1,0  allfor   ,,max = ∈xxxzxUA c , (16) 

( )( ) [ ] 1,0  allfor   ,,max ∈= xxxzxAU c

For  

. (17)  

2 Distributive laws.   [ ]1,0  all ∈x

( )( ) ( ) ( )( ) ,,,, minmin zxAyxxA  , minAUzyU dd = , (18)  

( )( ) ( ) ( )( )  ,,, ,, minmin zxUyxUAzyAx ddU d = , (19)  

( )( ) ( ) ( )( )  ,,, ,, maxmax zxAyxAUzyUx ccmaxA = , (20) 

( )( ) ( ) ( )( )  ,,, ,, maxmax zxUyxUAzyAx ccU c = . (21)  

4.4 Generalized Conjunction and Disjunction Operations 
The axiom systems of t-norms and t-conorms are very similar to each other except the 
neutral element, i.e. the type is characterized by the neutral element. If the neutral 
element is equal to 1 then the operation is a conjunction type, while if the neutral 
element is zero the disjunction operation is obtained. By using these properties we 
introduce the concepts of conjunction and disjunction operations. The followings are 
based on the work of Batyrshin et al. [9]. 

[0,1][0,1][0,1] : →Definition 8 Let T be a mapping ×T . T is a conjunction 
operation if   for all . xxT = )1,( ]1,0[∈x

[0,1][0,1] : Definition 9 Let S be a mapping S
xxS = )0,(  ]1,0[∈x

[0,1]→× . S is a disjunction operation 
if for all . 

Conjunction and disjunction operations may also be obtained one from another by 
means of an involutive negation N  

It can be seen easily, that conjunction and disjunction operations satisfy the 
following boundary conditions: 

 T(0,0) = T(0,1) = T(1,0) = 0,  (22) 

 T(1,1) =1 (23) 

 T(0,a) = T(a,0) = 0 (24) 

 S(0,1) = S(1,0) = S(1,1) = 1 (25) 

 S(0,0) = 0. (26) 

 S(1,a) = S(a,1) = 1 (27) 



By fixing these conditions new types of generalized operations are introduced. 

[0,1][0,1][0,1]: →Definition 10 Let T be a mapping ×T . T is a quasi-conjunction 
operation if 

T(0,0) = T(0,1) = T(1,0) = 0, and  

T(1,1) = 1.  and  ( ) ( ) ( )( )( )yNxNTNyxS ,, =

( ) SNyxT , =

[0,1][0,1][0,1]: →

( ) ( )( )( )yNxN , . 

Definition 11 Let S be a mapping ×S

[0,1][0,1][0,1] : →

. S is a quasi-disjunction 
operation if S(0,1) = S(1,0) = S(1,1) = 1, and S(0,0) = 0. 

It is easy to see that conjunction and disjunction operations are quasi-conjunctions and 
quasi-disjunctions, respectively, but the converse is not true. 

Omitting T(1,1) = 1 and S(0,0) = 0 from the definitions further generalization can be 
obtained. 

Definition 12 Let T be a mapping ×T . T is a pseudo-conjunction 
operation if T(0,0) = T(0,1) = T(1,0) = 0. 

Definition 13  Let S be a mapping [0,1][0,1][0,1] →: ×S . S is a pseudo-disjunction 
operation  if S(0,1) = S(1,0) = S(1,1)  = 1. 

Classes of conjunction and disjunction operation can be generated by means of certain 
generator functions and pseudo-operations. The following discussion is based on the 
work of Batyrshin et al. [9], [11].  

Theorem 5 Suppose T1, T2 are conjunctions, S1 and S2 are functions 
Si:[0,1]×[0,1]→[0,1] (i=1,2), are non-decreasing pseudo-disjunctions, h, g1, g2: 
[0,1]→[0,1] are non-decreasing functions such that g1(1) = g2(1) = 1; then the 
following functions 

 T(x,y) = T2(T1(x,y), S1(g1(x),g2(y))), (28) 

 T(x,y) = T2(T1(x,y), g1(S1(x,y))), (29) 

 T(x,y) = T2(T1(x,y), S2(h(x),S1(x,y))). (30) 

Comment:  e9 

Comment:  e10 

Comment:  e11 

are conjunction operations. 

Disjunction operations may be generated dually or obtained from conjunctions by 
means of negation operation. 

The conjunction operations given by (28), (29), (30) are commutative if T1, T2 and S1 
are commutative, g1= g2 in (28), and h(x) = c, where c is a constant, 0 ≤ c ≤ 1, in (30). 



Some simple parametric conjunctions obtained this way with generators 
( ) ( )( )0,11max xpxg −−= ( ) qxxg =, , h(x) = t, (p, q ≥ 0, 0 ≤ t ≤ 1) 

 are the following 

 ( ) ( ) ( )( )qyxpxyyxT ,11max, −−= , (31) 

 ( ) ( )( )qpqp yxyxyxy −+= ,minxT , , (32) 

 ( ) ( ) ( )qp yxyxyx ,max,min, =T , (33) 

 ( ) ( )( )pxyyxyxy −+= ,minxT , , (34) 

 ( ) ( ) ( )( )pxyyxtxy −+= ,maxyxT , . (35) 

Comment:  e12 

Comment:  e13 

Comment:  e14 

Comment:  e15 

Comment:  e16 

It is easy to see that conjunctions (34) and (35) are commutative. The conjunctions 
(32) and (33) also became commutative when p=q. The permutation of x and y in the 
left hand sides of (32) and (33) will change the value of T(x,y) when p is not equal to 
q. But, we can permute xp and yq in the right hand sides of conjunctions (32) and (33) 
and the value of correspondent conjunction T(x,y) will be not changed. Such kind of 
“commutative law” of conjunction operations will be called generalized 
commutativity of parametric conjunctions and disjunctions. More exactly, we will say 
that conjunction (28) satisfies the property of generalized commutativity if T1 and S1 
are commutative, g(x,p) is a generator dependent on parameter p and g1(x) = g(x,px), 
g2(y) = g(y,py) where px and  py are the values of parameter p. The conjunctions (32) 
and (33) satisfy the property of generalized commutativity, but the conjunction (31) 
does not satisfy this property.  

A tuning of the parametric conjunctions satisfying the property of generalized 
commutativity may be started with equal values of the parameters px and  py. In such a 
case, this conjunction will be commutative and will not depend on the order of its 
operands. After a separate tuning of the parameters, the values px and py reached will 
reflect the influence of these parameters on the performance of the fuzzy model. The 
example of function approximation based on the optimization of the parameters of the 
conjunction (32) satisfying the generalized commutativity conditions is considered in 
[10]. 

4.4.1 Generation of Quasi-Operations 

Quasi conjunction and disjunction operations enable the building of simpler 
parametric conjunction operations, as it is shown by Batyrshin et al. in [9]. 



Theorem 6 Suppose N is a negation on [0,1] and T, S are some quasi-conjunction and 
quasi-disjunction operations, respectively; then the following relations define 
correspondingly quasi-disjunction and quasi-conjunction operations: 

( ) ( ) ( )( )( )yNxNTNyxST ,, = ( ) ( ( ( ) ( )))yNxNSNyxS ,,T = .    

It follows from Theorem 6 that by means of any non-involutive negation it is possible 
to obtain some quasi-conjunction or quasi-disjunction from the conjunctions and the 
disjunctions considered in the previous section. However, such an approach does not 
result in construction of simple operations. 

Corollary 2 If N is an involutive negation, then for any quasi-conjunction T and 
quasi-disjunction S= ST  and for any quasi-disjunction S and quasi-conjunction T= TS  
the following De Morgan laws are fulfilled: 

( )( ) ( ) ( )( )yNxNTyxSN ,, = ( ( )) ( ( ) ( ))yNxNSyxTN ,,   =  

Theorem 7 ([9]) Suppose T1  is a quasi-conjunction, S1  is a quasi-disjunction and f, 
g, h:[0,1]→[0,1] are non-decreasing functions such that f(0)= g(0) = h(0) =0, f(1)= 
g(1) = h(1) = 1;  then the functions 

T(x,y) = f(T1(g(x),h(y))),     S(x,y) = f(S1(g(x),h(y))), 

are quasi-conjunction and quasi-disjunction respectively. 

The functions f, g and h used in the generation of quasi-conjunctions and quasi-
disjunctions are called generators of these operations. It is clear that quasi-
conjunctions and quasi-disjunctions defined in Theorem 3 are commutative if g = h 
and T1, S1 are respectively commutative. In a similar way as done to the conjunctions 
considered in the previous sections, we will say that these functions satisfy the 
property of generalized commutativity if T1 and S1 are commutative, g1(x,p) is a 
generator dependent on parameter p and g(x) = g1(x,px), h(y) = g1(y,py) where px and  py 
are the values of parameter p.  

Theorem 7 may be extended on quasi-connectives as follows.  

Theorem 8 Suppose T1, T2 are quasi-conjunctions, S1 and S2 are functions 
Si:[0,1]×[0,1]→[0,1] satisfying (2) and (3), h, g1, g2:[0,1]→[0,1] are non-decreasing 
functions such that g1(1)= g2(1) = 1; then the following functions 

Comment:  t3 

Comment:  t4 

T(x,y) = T2(T1(x,y), S1(g1(x),g2(y))), 

T(x,y) = T2(T1(x,y), g1(S1(x,y))), 



T(x,y) = T2(T1(x,y), S2(h(x),S1(x,y))), 

are quasi-conjunctions. 

By the use of Theorems 7 and 8, the simplest parametric quasi-conjunction operations 
can be obtained as follows: 

 T(x,y) =xpyq, (36) 

 T(x,y) = min(xp,yq), (37) 

 T(x,y) =(xy)p(x + y - xy) q, (38) 

Comment: e19 

Comment: e20 

Comment: e21 

where p,q ≥ 0. 

The last quasi-conjunction is commutative and the first two ones satisfy the property 
of generalized commutativity. It is seen that the proposed definition of conjunction 
and disjunction operations enables one to build the simplest parametric classes of 
conjunction and disjunction operations. It is to be noted that another system of axioms 
for generalized connectives is considered in [12] where the fuzzy conjunction (xy)k is 
considered and its application to fuzzy modeling is discussed. This conjunction 
belongs to the parametric class of conjunctions (36) with p = q. 

5 DISTANCE-BASED OPERATORS 
(Let e be an arbitrary element of the closed unit interval [0,1] and denote by )yxd ,  

the distance of two elements x and y of [0,1]. The idea of definitions of distance-based 
operators is generated from the reformulation of the definition of the min and max 
operators as follows 

( ) ( ) ( ) ( )
( ) ( )⎩

⎨
⎧

>
≤

=
0,0, if,
0,0, if,

),min(
ydxdy
ydxdx

yx ( ) ( )⎩
⎨
⎧

<
≥

=
0,0, if,
0,0, if,

),max(
ydxdy
ydxdx

yx  , 

[ ]1,0∈Definition 14 The maximum distance minimum operator with respect to e  is 
defined as 

( ) ( )> eydex ,,
( ) ( )

( ) ( ) ( )⎪
⎩

⎪
⎨

⎧

=
<=

eydexdyx
eydexdy

dx
yxe

,, if,,min
,, if,

 if,
),(maxmin . (39)  



[ ]1,0∈Definition 15 The maximum distance maximum operator with respect to e  is 
defined as 

( ) ( )
⎪
⎧ > eydexdx ,, if,

max ( ) ( )
( ) ( ) ( )⎪

⎩

⎨
=
<=

eydexdyx
eydexdyyxe

,, if,,max
,, if,),(max . (40)  

[ ]1,0∈Definition 16 The minimum distance minimum operator with respect to e  is 
defined as 

( ) ( )
( ) ( )⎪

⎨

⎧
>
<

= eydexdy
eydexdx

yx ,, if,
,, if,

),(minmin

( ) ( ) ( )⎪
⎩ = eydexdyx

e

,, if,,min
. (41)  

[ ]1,0Definition 17 The minimum distance maximum operator with respect to ∈e  is 
defined as 

( ) ( )
( ) ( )⎪

⎨

⎧
>
<

= eydexdy
eydexdx

yxe ,, if,
,, if,

),(minmax

( ) ( ) ( )⎪
⎩ = eydexdyx ,, if,,max

. (42)  

It can be proved by simple computation that the distance-based operators can be 
expressed by means of the min and max operators as follows. 

( )
( )
( )⎪

⎩

⎪
⎨

⎧

=
−<
−>

=
e-xyyx

xeyyx
xeyyx

e

2 if,,min
2 if,,min
2 if,,max

maxmin  (43)  

( )
( )
( )⎪

⎩

⎪
⎨

⎧

=
−<
−>

=
e-xyyx

xeyyx
xeyyx

e

2 if,,min
2 if,,max
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6 Conclusions 
In this paper some new approaches to the generalization of triangular operators are 
given. It is shown that by omitting and/or modifying some axioms from the axiom 
skeleton new generalized operation families can be obtained. Besides the theoretical 
discussions of the possible generalizations some concrete operator families are 
introduced. 
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