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Abstract: The Mamadani GMP with Mamdani implication inference rule says, that the 
membership function of the rule output is given with a fuzzy set, which is derived from rule 
consequence, as a cut of them. This cut is the generalized degree of firing level of the rule, 
considering actual rule base input, and usually depends on the covering over of the rule 
base input and rule premisse. But first of all it depends on the sup of that covered 
memebership function. Because of the non-continuos property of distance-based operators, 
it was unreasonable to use the classical degree of firing, to give expression to the 
coincidence of the rule premise, and system input, therefore a Degree of Coincidence (Doc) 
for those fuzzy sets has been initiated. 
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1 Mamdani type implication inference  

In control theory and also in theory of approximate reasoning introduced 
by Zadeh in 1979, [14] much of the knowledge of system behavior and system 
control can be stated in the form of if-then rules. The Fuzzy Logic Control, FLC 
has been carried out searching for different mathematical models in order to 
supply these rules. 

In most sources it was suggested to represent an 

if x is A then x is B 

  



rule in the form of fuzzy implication (shortly Imp(A,B), relation (shortly R(A,B)), 
or simply as a connection (for example as a t-norm, T(A,B)) between the so called 
rule premise: x is A and rule consequence: y is B. Let x be from universe X, y from 
universe Y, and let x and y be linguistic variables. Fuzzy set A in X is characterized 
by its membership function μA: x→[0,1]. The most significant differences between 
the models of FLC-s lie in the definition of this connection, relation or 
implication. 

 The other important part of the FLC is the inference mechanism. One of 
the widely used methods is the Generalized Modus Ponens (GMP), in which the 
main point is, that the inference y is B’ is obtained when the propositions are: 

- the ith rule from the rule system of n rules: if x is Ai  then y is BBi  

- and the system input x is A’. 

 GMP sees the real influences of the implication or connection choice on 
the inference mechanisms in fuzzy systems ([4], [13]). Usually the general rule 
consequence for one rule from a rule system is obtained by 

B’(y)=supx∈X(T(A’(x),Imp(A(x),B(y))) 

 In this topic we can find the new results for left continuos t-norms in [1]. 
The connection Imp(A,B) is generally defined, and it can be some type of t-norm, 
too. 
 In engineering applications the Mamdani implication is widely used. The 
Mamadani GMP with Mamdani implication inference rule says, that the 
membership function of the consequence B’ is defined by 

B’(y)=supx∈X(min(A’(x),min(A(x),B(y))) 

or generally 

   B’(y)=supx∈X(T(A’(x),T(A(x),B(y)))   (1) 

 where T is a t-norm. 

 Using the t-norm properties, from (1) 

B’(y)=T(supx∈X (T(A’(x),A(x))),B(y)) 

 Generally speaking, the consequence (rule output) is given with a fuzzy 
set B’(y), which is derived from rule consequence B(y), as a cut of the B(y). This 
cut, supx∈X (T(A’(x),A(x))), is the generalized degree of firing level of the rule [13], 
considering actual rule base input A’(x), and usually depends on the covering over 
A(x) and A’(x). But first of all it depends on the sup of the membership function of 
T(A’(x),A(x)).  

The FLC rule base output is constructed as a crisp value calculated with a 
defuzzification model, from rule base output. Rule base output is an aggregation 



of all rule consequences B’(y) in rule base. As aggregation operator, t-conorm is 
usually used. 

yout = S(B’n,S(B’n-1,S(....,S(B’2, B’1)))). 

2 Inference with distance based operators 

2.1 Distance based operators 
The maximum distance minimum operator with  
respect to parameter  is defined as [ ]1,0∈e
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The maximum distance maximum operator with respect to [ ]1,0∈e  is defined as 
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The minimum distance minimum operator with respect to [ ]1,0∈e  is defined as 
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The minimum distance maximum operator with respect to [ ]1,0∈e  is defined as 
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2.2 Degree of coincidence in inference mechanism 

In system control intuitively one would expect: let's make the powerful 
coincidence between fuzzy sets stronger, and the weak coincidence even weaker. 



The evolutionary operators group, ([9]),  and distance-based operators group, ([8]) 
satisfy that properties, but the covering over A(x) and A’(x) are not really reflect 
by the sup of the membership function of the Te

max(A(x),A’(x)).  

Hence, and because of the non-continuos property of distance-based 
operators, it was unreasonable to use the classical degree of firing, to give 
expression to the coincidence of the rule premise (fuzzy set A), and system input 
(fuzzy set A’), therefore a Degree of Coincidence (Doc) for those fuzzy sets has 
been initiated. It is nothing else, but the proportion of area under membership 
function of the distance-based intersection of those fuzzy sets, and the area under 
membership function of the their union (using max as the fuzzy union). 
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This defnition has two advantages: 

- it consider the width of coincidence of A and A’, and not only the ''height'', the 
sup, and 

- the rule output is weighted with a measure of coincidence of A and A’  in each 
rule ([10]). 

The rule output fuzzy set B’ is achieved as a cut of rule consequence B 
with Doc. 

B’ (y)=Te
min (B(y), Doc)   or 

B’ (y)=Te
max (B(y), Doc) 

It is easy to prove that Doc∈[ 0,1], and Doc=1 if A and A’ cover each 
other, and then B’(y)=B(y), and Doc=0 if A and A’ have no point of contact, and 
then B’(y)=0. 

 The FLC rule base output is constructed as above explained. The output 
is constructed as a crisp value calculated from rule base output, which is an 
aggregation of all rule consequences BBi’(y) in rule base. For aggregation, distance 
based operators Se

min or Se
max can be used. 

An additional possibility is if the cut B’(y) of the rule concequence BBi(y) 
is calculated from the 
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expression ([11]). 



 Based on this, for triangular membership functions A(x), A(x), B(y), we 
have 

( ) ( )( )DocyByB −−=′ 11,max . 

B’(y) is obtained as a weighted fuzzy set, and the weight parameter Doc 
depends on ∫Te

max(A(x),A’(x))dx. It is a measure number related to the area under 
membership function Te

max(A(x),A’(x)), and it is a fuzzy measure in the same 
sense, as it can be found in [2] and [5],[6],[7]. Taking this fact into consideration, 
a connection between Doc type of inference mechanism and generalized fuzzy 
measures and integrals is being researched. 

2.3 Example 

Let we have a rule base system, with n=5 rules. Figure 1. shows the 
membership funktions of the rule premisses (Ai(x)), rule input (A’(x)), rule 
concequences (BBi(y)), rule outputs (B’i(y)), and the aggregated rule output (B(y)).  

Ai and A’ Te
max(Ai,A’) T(Bi , Te

max(Ai,A’))

rule system
output
Bout(y)

System input A’(x)

Crisp system
output yout

figure 1.

We can see the justification for this line of reasoning in the simulations in a 
simple dynamic system, using distance based operator-pairs  (Te

max,Se
max) and 

((Te
min,Se

min)). 



 

3 Conclusion 

   

In a FLC system, where we use distance based fuzzy operators in inference 
mechanism, the rule base output is obtained as a weighted fuzzy set of the rule 
concequence, and the weight parameter Doc, depends on a measure number 
related to the area under membership function Te

max or min(A(x),A’(x)), and it is a 
fuzzy measure in the same sense, as it can be found in [2] and [5],[6],[7]. Taking 
this fact into consideration, a connection between Doc type of inference 
mechanism and generalized fuzzy measures and integrals is being researched. 

 The further steps are the investigations of measure-properties of different 
degree of firing types used by FLC, and the use of the other types of fuzzy 
integrals in decision-making by FLC, above all integrals introduced in pseudo 
analysis. 
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