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Abstract

This paper presents a feature ranking method adapted to fuzzy modelling with output from a
continuous range. Existing feature selection/ranking techniques are mostly suitable for clas-
sification problems, where the range of the output is discrete. These techniques result in a
ranking of the input feature (variables). Our approach exploits an arbitrary fuzzy clustering
of the model output data. Using these output clusters, similar feature ranking methods can be
used as for classification, where the membership in a cluster (or class) will no longer be crisp,
but a fuzzy value determined by the clustering. We propose the application of the Sequen-
tial Backward Selection (SBS) search method to determine the feature ranking by means of
different criterion functions. We examined the proposed method and the criterion functions
through a comparative analysis.

1 Introduction

It is well-known that traditional fuzzy rule-based systems (FRBSs) have exponential
time and space complexity in terms of N , the number of variables [24]. The number
of rules in a rule base increases exponentially with N . Thus the resulting model of
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the system is very large. In practice, if N exceeds the experimental limit of about
5–8 variables [24], the rule based system becomes intractable. Due to this fact, rule
base reduction emerged as an important research field in the past decade including
e.g. the topics of fuzzy rule interpolation methods (see e.g. [24, 2, 16, 31]), hierarchi-
cal reasoning techniques [23, 29], and other rule base reduction methods [3, 4, 5, 7],
or the replacement of the product inference form with generalized tunable operators
introduced in for instance the works of Rudas [26, 27, 28].

If the design of the modelled system is based on input-output data samples, a pos-
sible method of rule base reduction is the omission of those variables which have
no relevant effect on the output. In pattern recognition and classification such meth-
ods are called feature selection [9]. Henceforth, when we use the terms feature or
variable in this paper, we refer to the same notion. In these contexts, having a finite
number of classes (or clusters), the output of a sample data indicates which class the
sample belongs to. Practically it means that outputs are selected from a finite set of
labels or, equivalently, from a closed range of natural numbers.

Feature selection methods are of two main types: feature selection and ranking
methods. The methods of the former type determine which input features are rel-
evant in a given model, whilst the ones of the latter type result in a rank of im-
portance. Feature ranking methods can be considered as preprocession of feature
selection, because relevant features can be selected by taking the first k elements of
the head of the feature ranking, and then, by optimizing the number of k, e.g. by a
trial-and-error procedure. We aim at providing a reliable feature ranking method for
fuzzy modelling problems.

On fuzzy modelling we mean the automatic design of a fuzzy system from a set of
input-output data samples, where the sample data values (including the output) are
real numbers. It means that opposing classification problems, the range of the output
is continuous, so feature selection/ranking algorithms developed for pattern recogni-
tion or classification task can not be applied directly. Our goal is, therefore, to bridge
the gap between existing feature selection/ranking methods and fuzzy modelling by
the adaptation of the referred methods.

Classical feature selection/ranking methods need to be modified or the rule base
has to be preprocessed before being applied to fuzzy modelling. A straightforward
solution of this problem is the grouping of output data values. An obvious way of
grouping is the clustering of output using some fuzzy clustering technique. A fuzzy
clustering method divides the clustered space into various regions, called clusters,
and determines a vector of membership degrees for each data, which indicates the
grade to which the particular data belongs to the clusters. Because we cluster only
the one dimensional output, the shape of the clusters (e.g. spherical or ellipsoid)
is irrelevant, due to the fact that in our case clusters are interval. In our model we
used fuzzy c-means (FCM) clustering ([6]; see Subsection 3.2), but other fuzzy
clustering methods are also suitable for this purpose (e.g. subtractive clustering [21]
or Gustafson–Kessel algorithm [17]).



Let us now briefly summarize our proposed method: first, we cluster the output data
by FCM, then we apply an appropriately modified feature selection/ranking method.
We adapt the interclass separability based feature selection/ranking method for this
task. (The origin of this method is attributed to [12], who first applied the interclass
distance concept to feature selection and extraction problems. Therefore this method
is also known as Fischer’s interclass separability method.)

This paper is organized as follows. In Section 2 we give a short overview of fea-
ture selection methods in fuzzy applications. In Section 3 we outline the interclass
distance based feature selection problem in probabilistic case, and recall the FCM
method. The main algorithm is described in section 4. In section 5 we analyze the
proposed method on some sample data sets.

2 Feature selection methods in fuzzy application
Fuzzy modelling based on the clustering of output data was first proposed by Sugeno
and Yasukawa [30]. For reducing the number of inputs they used the regularity cri-
terion (RC) method [20]. RC creates a tree structure from the variables, where the
nodes represent particular subsets of the entire variable set. The nodes are evalu-
ated according to an objective function, and the evaluation process stops if a local
minimum is found. We are also working on the automatic design of fuzzy modelling
systems but we found the RC method unreliable: it is very sensitive to its parameters
[32], therefore we decided to look for an alternative solution. Another deficiency of
RC that it uses the fuzzy model itself to evaluate the nodes in the searching tree.
Therefore, a preliminary fuzzy model should be built in advance.

Another solution was proposed to solve feature selection problem by Costa Branco
et al [8]. They used the principal component analysis (PCA) method [22] for iden-
tifying the important variables in the fuzzy model of an electro-mechanical system.
The PCA method transforms the input data matrix of (possibly highly) correlated
variables to an orthogonal system, where the variables become uncorrelated. From
the transformed system the variables having eigenvalues under a certain threshold
can be omitted. However, by this transformation the meaning of the variables and
hence the direct linguistic interpretability of the system is lost, which we consider
one of the most important features of a fuzzy system.

Hong and Chen proposed a general learning algorithm which automatically derives
fuzzy if–then rules and membership functions from a set a given training examples
using a decision table [18]. They improved Hong’s and Lee’s algorithm [19] by first
selecting relevant features and building an appropriate initial membership function
in order to avoid very large rule bases. This method, although shows impressing
performance benchmarks, is only suitable for finding relevant attributes for classifi-
cation problems.

In the field of fuzzy classification another group of feature selection algorithms has
been applied successfully [1, 9, 25] which are based on the interclass separability
criterion. Let us briefly describe this method in the probabilistic case [10].



3 Preliminaries

3.1 The idea of interclass separability based classification

Let us take a data set consisting of N -dimensional vectors {x1, . . . , xn}. Here N
is the number of variables, features, or attributes. The vectors xj (j = 1, . . . , n)
should be categorized into classes Ci (i = 1, . . . , C) which possess a priori class
probability Pi, and the cardinality of the classes is |Ci| = ni.

Let us denote the features by fk, k = 1, . . . , N , and the original feature set of all the
measured N features by FN = {fk|k = 1, . . . , N}. Analogously, denote by FN ′ ,
N ′ < N , the feature set where N − N ′ features are removed from FN . Obviously,
by deleting different features, we obtain different feature sets FN ′ .

Let us assume that the classes occupy different regions in the multi-dimensional
feature space. Intuitively, more distant the classes are from each other, the better the
chances of successful classification of input vectors. It is reasonable, therefore, to
select as feature space that subspace of the original N -dimensional feature space in
which classes are maximally separated in terms of certain distance function. Thus,
we seek a feature set F , which maximizes the average distances of C classes.

Let the matrix XFN
be formed by the vectors xj (j = 1, . . . , n) associated with the

original feature set and vectors. Similarly, we denote by XFN′
=

[

x′
1 . . . x′

n

]

the
matrix associated with feature set FN ′ , and consisting of vectors obtained by delet-
ing N − N ′ features from vectors xj (j = 1, . . . , n). A general criterion function
that maximizes the interclass distance, and thus can be exploited to rank features, is
defined as [10]

J(XFN′
) =

1

2

C
∑

i=1

Pi
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1

ninj
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∑
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which is the average distance between the elements of C classes. Here vectors x′
ik,

and x′
j` (k = 1, . . . , ni; ` = 1, . . . , nj) are the elements of the ith and jth class,

respectively, and d(x′
ik, x′

j`) denotes a distance metric, usually the square of the
Euclidean norm, which is

d(x′
k, x′

`) =

N ′

∑

j=1

(x′
kj − x′

`j)
2 = (x′

k − x′
`)

T (x′
k − x′

`), (2)

where T denotes matrix transpose. The optimal feature set F satisfies

J(XF ) = max
FN′

J(XN ′). (3)

There are various choices for the criterion function. This issue is addressed in Sub-
section 4.3.



In order to rank the elements of the feature set, one may apply e.g. one of the follow-
ing well-known search methods: Sequential Backward Selection (SBS), or Sequen-
tial Forward Selection (SFS) search method [10]. SBS is a simple top-down search
procedure where one feature at a time is deleted from the current feature set. At each
stage, the attribute to be removed from the feature set is selected from among the
elements of the feature set so that the new shrunk set of features yields a minimum
value of the criterion function used. SFS is the bottom-up counterpart of SBS search
method, where the one feature at a time, having the largest effect on the criterion
function, is added to the current feature set.

3.2 Fuzzy c-means (FCM) clustering algorithm

Let us now describe FCM algorithm proposed by Bezdek [6]. As we mentioned, we
shall apply FCM method to group output values of a data set, where these values are
from a continuous range.

Fuzzy clustering (in general) assigns a membership grade µij to every vector xj

(j = 1, . . . , n) for every cluster i (i = 1, . . . , C), where C is the number of clusters.
We require that

C
∑

i=1

µij = 1 ∀j ∈ [1, n] (4)

i.e. cluster membership degrees are normalized. We define a matrix U consisting
of µij . Our goal is to find an optimal C (according to an objective function) and to
determine the matrix U. Clusters are represented by their center, vi. In the presented
algorithm m > 1 is an adjustable real valued parameter, the so-called fuzzifier, that
may vary usually in the range of [1.5, 3], and is set to 2 as default. The original
algorithm is the following [6]:

1. Fix C, the number of clusters, set ` = 1, and initialize U with U(1).

2. Calculate the centers vi of the fuzzy clusters as

vi =

n
∑

j=1

(µij)
mxj

/

n
∑

j=1

(µij)
m ∀i ∈ [1, C]. (5)

The distance of the jth vector from the ith cluster center is defined by

dij = ‖xj − vi‖.

3. Calculate the new U(l) for ` := ` + 1 as

Ij := {i|1 ≤ i ≤ C, dij = 0}

Ĩj := {1, . . . , C} − Ij

Ik = ∅ =⇒ µij =
1

∑C
k=1(dij/dkj)2/(m−1)

Ik 6= ∅ =⇒ µij = 0 ∀i ∈ Ĩj ; µij =
1

|Ij |
∀i ∈ Ij .



4. If ‖U(`−1) − U(`)‖ ≤ ε, where ε is a prescribed error, then stop; otherwise
go to step 2.

The resulting FCM algorithm is able to recognize spherical clusters (clouds of
points) of approximately the same size. FCM clustering reaches its limits for clusters
of different shapes, sizes and densities. If these attributes of the clusters are very in-
homogeneous, one can substitute FCM by an alternative clustering, e.g. Gustafson–
Kessel method [17]. In our application we cluster one dimensional values, therefore
the shape of clusters is homogeneous (interval).

There are many studies about FCM containing various objective functions to deter-
mine the optimal number of clusters [6, 11, 13]. We used the one proposed in [13],
and also applied in [30], in which the goal is to minimize

S(C) =

n
∑

j=1

C
∑

i=1

(µij)
m

(

‖xj − vi‖
2 − ‖vi − x‖2

)

. (6)

Here

x =
1

n

n
∑

j=1

xj (7)

denotes the averages of all input vectors.

4 The feature ranking on fuzzy clustered output
(FRFCO) algorithm

4.1 Problem definition

Let us now turn to formalize our problem: feature ranking of fuzzy modelling sys-
tems. Now, the data set consists of pairs (xj , yj) (j = 1, . . . , n) determining the
behavior of the modelled system. We intend to filter the features (variables), and
keep only those ones, that have significant effect on the output. To achieve our pur-
pose, we rank the features of F depending on their relevance to the determination
of the output.

Let us assume that we already performed FCM clustering on the output values yj

(j = 1, . . . , n), and we obtained C as the optimal number of clusters by means
of (6), and values µij as membership grades in class Ci (i = 1, . . . , C), where
condition (4) is satisfied. Thus, having classified the model output, instead of real
values, we are now able to assign cluster membership grades to each input vector,
where the membership grade µij represents the distance (more precisely: closeness)
of the original output value, yj , from the representative cluster center vi (see (5)
with substitution xj → yj). Considering that yj is the projection of the input vector
xj onto the output space, we can assign membership degree µij to xj as associated
grade in the class Ci.



Now, on the analogy of the class probability in the probabilistic model, we can
define the fuzzy class frequency of occurrence of a class Ci as the normalized sum
of total membership grades assigned to the given class

Pi ∼ Fi :=
1

n

n
∑

j=1

µij

Observe that due to the condition (4), we have
∑C

i=1 Fi = 1. Similarly we can
define fuzzy class cardinality on the analogy of class cardinality, ni, by the following
expression:

ni ∼
n

∑

j=1

µij .

We introduce matrices measuring between-class (interclass) and within-class (intr-
aclass) averaged distances of input vectors xj , (j = 1, . . . , n):

Qb(XF ) =
C

∑

i=1

Fi(vi − x)(vi − x)T (8)

Qi(XF ) =
1

∑n
j=1 µij

n
∑

j=1

µij(xj − vi)(xj − vi)
T

Qw(XF ) =

C
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i=1

Qi =

C
∑

i=1

1
∑n

j=1 µij

n
∑

j=1

µij(xj − vi)(xj − vi)
T (9)

Qt(XF ) = Qb + Qw =

C
∑

i=1

1
∑n

j=1 µij

n
∑

j=1

µij(xj − x)(xj − x)T (10)

where

vi =
1

∑n
j=1 µij

n
∑

j=1

µijxj (11)

are the fuzzy centers of the ith cluster, and x is defined in (7).

Here (8) and (9) are called fuzzy between-class (interclass), and fuzzy within-class
(intraclass) scatter matrices, respectively, that sum up to the total fuzzy scatter ma-
trix (10), fuzzy generalization of their crisp counterparts, see also [9]. (Scatter ma-
trices are also known as covariance matrices.) The defined quantities are function
of the matrix XF assigned to the feature set F in the sense that all vectors xj con-
tain exactly those features, that appear in the given feature set. When the context
makes clear that we mean the quantities (8) and (9) associated to the feature set F ,
we use simpler notation Qb and Qw. In (9) and (10), membership grades µij can
be interpreted as a class weight of input vectors. We assume that Qb and Qw are
nonsingular, positive semi-definite matrices.



The feature selection based on interclass separability concept is a trade-off between
Qb and Qw. Intuitively, the classes are well-separated, if the average interclass dis-
tance, Qw, is large, while the average intraclass distance, Qb, is low. Therefore, an
appropriate solution to this problem is to find the feature set F which simultaneously
maximizes (9) and minimizes (8).

Based on these quantities we can define appropriate criterion functions in Subsec-
tion 4.3. Needless to say, that the choice of the criterion function is problem depen-
dent. Yet often, certain criterion functions possess better characteristic than others,
therefore we will examine the effect of different criterion functions in Section 5, and
introduce the FRFCO algorithm with a general criterion function.

4.2 The proposed algorithm

The proposed feature ranking algorithm is an instance of SBS search method. In
our application, SBS method applies the interclass separability criterion function.
In the ith step we delete temporarily a variable ftemp (ftemp ∈ Fk−1), so we
have feature set Fk = {f |f ∈ Fk−1, f 6= ftemp} and input matrix XFk

, where
the starting feature set is F0 = FN , and we calculate the matrices Qb(XFk

) and
Qw(XFk

) to be used in the criterion functions. This procedure is repeated for all
the variables in Fk−1. By means of an appropriate criterion function, the expression
min

f∈Fk−1

J(XFk
) attains its minimum when the deviation between Qb and Qw is the

least, i.e. when the most important variable is omitted. Then we remove the selected
feature f ∈ Fk−1 permanently, we can restart the algorithm with the updated feature
set Fk. The algorithm ends when the cardinality of the feature set is 1.

The FRFCO algorithm

1. Let F0 := {f1, . . . , fN}, k = 1.

2. For all ftemp ∈ Fk−1

(a) Let Fk := Fk−1 −{ftemp}, and update matrix X by deleting temporar-
ily its ftempth row, and vectors vi (see (11)) and x (see (7)) by deleting
temporarily their ftempth element.

(b) Calculate matrices Qb(XFk
), Qw(XFk

) and determine J(XFk
).

3. Let fperm = argmin
f∈Fk−1

J(XFk
), i.e. where J attains its minimal value. We

obtain the final Fk by deleting permanently the variable fperm from Fk−1,
and we update expressions X, vi and x appropriately.

4. If k < N − 1 then back to step 2, else stop.

The order of the deleted variables gives their rank of importance.



Remark 1 Note that fperm can contain more than one variable. In such a case we
delete all of them at a time.

Remark 2 Primarily, we apply the SBS search method, but we also run experiments
with SFS search method for comparison, see Section 5.

4.3 Selection of criterion function

In [10] it is shown that (1) can be transformed with algebraic manipulation to

J1(XF ) = tr(Qw) + tr(Qb) (12)

where “tr” denotes the trace of a matrix, the sum of the diagonal elements. Recall
that we intend to maximize Qb and at the same time minimize Qw. It can be ob-
tained by maximizing (12), however, in this case the effect of intraclass distance of
input vectors is unchecked. Therefore, the magnitude of the criterion function (12)
is not a good indicator of class separability.

A more realistic criterion function to maximize is

J2(XF ) =
tr(Qb)

tr(Qw)
(13)

which reflects more to the described intuitive notion. For more details see [9, 10].
However, (13) is only suitable if the domain of variables are homogeneous or at least
comparable, because if the dimensionality are different, e.g. one variable is in the
linear domain and another is in the logarithmic, then the comparison is meaningless.
Another drawback of J2 was pointed out in [9], that is for a particular feature subset
a class Ci is well scattered and a portion of Ci is overlapped with another class Cj but
their centers are far away, then J2 may be greater then for another feature subset,
which separates the two classes in such a way that a single hyperplane may pass
between them, but their centers are not so far apart.

Moreover, expression (13) ignores the effect on the separability of the correlated
variables. This shortcoming can be overcome by preprocessing the scatter matrix
Qw by a suitable transformation V average covariance of the input vectors is the
identity matrix: VT QwV = I. It is easy to see that matrix Q

1/2
w is an appropriate

choice for V. In the transformed space criterion J2 becomes

J3(XF ) = tr(Q−1/2
w QbQ

1/2
w ) = tr(Q−1

w Qb) =

N ′

∑

k=1

λ′
k (14)

where λ′
k, k = 1, . . . , N ′ are the eigenvalues of matrix, Λ′, i.e. the product matrix

Q−1
w Qb, and N ′ is the size of the feature set F . It can be shown [10], that J3 corre-

sponds to a separability measure which uses the quadratic metric with the average



covariance of input vectors as scaling matrix. We can criticize J3 from the point we
mentioned for PCA, namely that it transforms the original features, hence the lin-
guistic interpretability of the elements of a transformed feature set is questionable.

Another possible criterion function can be formulated by means of the determinants
of scatter matrices. Determinant of scatter matrices has a geometrical interpretation
[10], meaning the volume occupied by the elements of clusters in the multidimen-
sional space. Intuitively, the greater the ratio of the determinants of between- and
within-class matrices, or more conveniently, of the determinants of the total- and
within-class matrices, the greater the spatial separation of classes. Hence, the func-
tion

J4(XF ) = det(Qt)/det(Qw) (15)

is a suitable indicator of class separability.

Let us now investigate J4. Since matrices Qt and Qw are symmetric, there exists a
matrix V that diagonalizes both of them:

VT QtV = Λ,

VT QwV = I.
(16)

Because of (16), J4 can be expressed in terms of diagonal elements of matrix Λ as:

J4(XF ) =
det(VT QtV)

det(VT QwV)
=

N ′

∑

k=1

λk

Furthermore, from (16) follows

Q−1
w QtV = VΛ (17)

so Λ is the matrix of eigenvalues of Q−1
w Qt. Due to (10), we have

Q−1
w Qt = I + Q−1

w Qb

Now, from (14) and (17) we obtain

Λ′ = Λ − I

so λ′
k = λk − 1 and consequently J4 can be expressed as

J4(XF ) =

N ′

∑

k=1

(1 + λ′
k)

Comparing J3 and J4 we can state that the latter is likely to be more reliable in cases
where the contributions of total interclass distance are distributed evenly over all the
axes of the coordinate system. Thus, in contrast to J3, it is unlikely, that J4 would
select a feature set which separates two classes well, but only at the expense of the



ability of discriminate between all other classes. This situation can be characterized,
in terms of eigenvalues λk, by the domination of a single eigenvalues in the criterion
J3.

We note that the value of J4 can vary from very small to very large. This phe-
nomenon can cause problems, as, on one side, a very small value can turn out to be
zero if its order attains the accuracy of the underlying computer system, while on
the other side, a very large value may result in loss of information, when rounding
is involved. To overcome these possible drawbacks other criterion functions can be
used.

Another problem can arise if any of the matrices appearing in (15) are singular, and
hence the determinant is negative. This problem can be solved by taking the absolute
value of the determinant.

The use of these functions does not require any modifications of the FRFCO algo-
rithm. We examine their effect on the ranking in Section 5.

We remark that the normalization of the input values can also solve the problem of
computer system accuracy. The effect of this transformation on the ranking is out of
the scope of this paper.

5 The comparative analysis of FRFCO

We applied the proposed method to several data sets. We compare our results to
two other methods: the RC method [20] using a fixed setting and input contribution
measure (ICM) analyzer (similar to sensibility analysis) [14]. RC divides the data
into two groups. For this, we first ordered the data based on their output value, then
put them in group A and alternately in group B according to this ordering. Here we
remark again that the result obtained by RC is unstable as the RC is very sensitive
to its parameters, i.e. how the two groups are selected and how the fuzzy submodels
are built for the data [32]. The ICM makes use of a BPNN for training by using the
given data set. It then varies the input variables one at a time to their minimum and
maximum limit. The ICM of the input variable is then measured based on the effect
of the input variable to the output.

For FCM we fixed the value of fuzzifier to the default (m = 2), and we use SBS
search method unless stated otherwise.

5.1 Simple synthetic data set

First, we checked whether FRFCO gives consistent result on the synthetic and real
data sets given in [30]. The synthetic data set contained 50 samples with 4 variables.
The first two variables were obtained from the function

y = f(x1, x2) = (1 + x−2
1 + x−1.5

2 ), 1 ≤ x1, x2 ≤ 5



and the last two were chosen randomly. The optimal number of clusters determined
by (6) equals 6. In this case the determinants are all positive in each iteration. Table 1
shows the results obtained by FRFCO with various criterion functions with different
search method and by other techiques.

Table 1: Ranking of the 4 input features of the synthetic data set from [30]

method Ranking Remarks

FRFCO with J2 〈2, 3, 1, 4〉

FRFCO with J3 〈2, 1, 3, 4〉

FRFCO with J4 〈2, 1, 3, 4〉

FRFCO with J3 〈2, 1, 4, 3〉 SFS is used

FRFCO with J4 〈2, 1, 3, 4〉 SFS is used

ICM with 4–8–1 〈2, 1, 3, 4〉 the contribution of each variable is:

architecture 〈67.85, 29.57, 1.79, 0.79〉

RC 〈1, 2〉 Automatically pruneda

a The RC method automatically prunes the irrelevant variables.

On this synthetic sample our proposed method gives the correct ranking by using
function J3 or J4 as the criterion function. Because all the determinants are positive
we do not need to take their absolute value to solve singularity problem. The crite-
rion function J2 also finds the most important variable, but fails to find the second
one. When SFS search method is used the ranking is very similar, just the order of
random variables is changed.

5.2 Real data set of a chemical plant

The second sample data set was the model of a chemical plant with 5 inputs [30].
The inputs were the following: x1 – monomer concentration, x2 – change of monomer
concentration, x3 – monomer flow rate, x4 and x5 – local temperature inside the
plant. The output was the set point for monomer flow rate. 70 sample data were
provided.

In [30] the first three variables were found important by means of the RC method.
We have to admit that we could not generate this result with our RC implementation
regardless of the applied parameter settings [32]. According to the ICM analyzer
the third variable is the most important, then the first, while the remaining three
were considered irrelevant. These results are compared with the FRFCO method in
Table 2. The optimal number of clusters is again 6. All the determinants are positive
during the elimination process.



The FRFCO gives the same result with all the criterion functions, and this also co-
incides with other techniques. Because the determinants are positive the rankings
obtained with J4 is correct, and absolute value function is need not to be applied
to J4. Criterion functions permute the order of the last three variables, but this is
not very significant, because their contributions are similar and very low accord-
ing to the ICM analyzer. Figure 1 shows the values of J2 before the first deletion.
Clearly, the difference between the first and the last two variables is insignificant
and only due to rounding error of the computer system used. We remark that this
value coincides with the one obtained by our RC implementation.

5.3 Eye-gaze data set

We also applied our technique to eye-gaze data set which was analyzed thoroughly
by Gedeon in [15]. There, the author studied trained back propagation neural net-
works for ranking the 12 input features. The number of sample data was 909. The
data set is described in details in [15]. We used the eye-gaze data set with its original
output, but also with the network outputs of the best trained network. The optimal
number of clusters was 2 in both cases. There are both negative and positive de-
terminants during the iteration steps. The results (for both data sets) of the FRFCO
with various criterion functions are compared with the result of the best trained net-
work and the ICM analyzer and are depicted in Table 3. The first part of the table
contains the results with the original data, while the second part with network output
data.

The results in Table 3 give many possibilities for comparison, from which we would
like to emphasize the following. The results by J2 are not in accordance with Gedeon’s
best considered one. The reason of this result partly is that the domains of variables
vary. Due to the various signs of the determinants the use of the absolute value gives

Table 2: Ranking of the 5 input features of the chemical plant data set from [30]

method Ranking Remarks

FRFCO with J2 〈3, 1, 5, 2, 4〉

FRFCO with J3 〈3, 1, 2, 5, 4〉

FRFCO with J4 〈3, 1, 4, 5, 2〉

ICM with 5–10–1 〈3, 1, 2, 5, 4〉 contribution of variables:

architecture 〈75.94, 22.17, 1.10, 0.78, 0.01〉

RC in [30] 〈3, 2, 1〉 Automatically pruned a

RC 〈3〉 Automatically pruned a

a The RC method automatically prunes the irrelevant variables.
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Figure 1: The values of J2 before the first elimination (on chemical plant data)

different results. Surprisingly, the result of J4 without absolute value is more similar
to the reference result of Gedeon than J4 with absolute value.

The ICM analyzer also does not give correct results. It is in accordance with [15],
where the similar sensitivity analysis was studied and it failed to find the correct
or close-to-correct ranking. It may be argued that in this case we have only two
clusters, and a small change in a variable can change the dominant cluster if the
point is close to the boundary and the change applied ia towards the other cluster,
but on the other hand, if a huge change applies in the opposite direction the dominant
cluster remains the same. Note, that in this case the membership in the clusters is
not fuzzy, but crisp!

Naturally, the results with the first data set is closer to Gedeon’s results, and the
evaluation with the network output the ranking gives a different result. Nevertheless,
the six most significant variables coincide with Gedeon’s result in 3 places, and the
three most significant variables in 2 places.

5.4 Summary and hints for use

The best results were obtained in all the three examples with the use of the criterion
function J4. If the determinants are of both signs, then the use of absolute value



function can improve its performance. When the domain of the features is homoge-
neous or at least comparable the J2 criterion function also provides good results.

As the ranking does not specify how many features to use, the easiest way is to try
it experimentally. For this we can start to build up fuzzy rule base models (e.g. with
Sugeno and Yasukawa’s method [30]) with a small number of top ranked features
(one or two). Then they should be evaluated by a proper performance index function.
If a local optimum is reached according to this index the fuzzy model structure is
accepted. Finally, some parameter identification or tuning algorithms can be applied
to improve the performance of the final model (see [25, 30]).

6 Conclusion

We proposed in this paper a feature ranking algorithm adapted to fuzzy modelling
with output from a continuous range. The main idea is to cluster the output data and
to use the cluster-membership degrees as weights in the feature ranking method.
Several criterion functions were proposed for determining the ranking. We applied
our method to real world and synthetic data sets, and it was likely to find the proper
or close-to-proper ranking. Finally, some hints for the use of the algorithm were
presented.

Table 3: Ranking of the 12 input features of eye-gaze data set

method Ranking Remarks

best of [15] 〈6, 4, 3, 2, 7, 5, 1, 10, 9, 8, 12, 11〉

FRFCO with J2 〈7, 1, 8, 12, 3, 2, 11, 10, 4, 5, 9, 6〉

FRFCO with J4 〈6, 5, 3, 2, 9, 7, 4, 1, 12, 10, 8, 11〉

FRFCO with J ′
4 〈7, 4, 3, 8, 11, 5, 1, 2, 9, 10, 12, 6〉

ICM with 12–24–1 〈12, 7, 9, 6, 1, 3, 8, 4, 2, 10, 11, 5〉 contribution of variables:

architecture 〈25.22, 19.66, 17.66, 9.57, 9.09, 5.34, 4.17, 3.29, 2.18, 1.83, 1.18, 0.81〉

FRFCO with J2 〈7, 12, 1, 3, 2, 8, 10, 11, 9, 5, 6, 4〉

FRFCO with J4 〈5, 4, 6, 9, 8, 1, 11, 2, 3, 10, 12, 7〉

FRFCO with J ′
4 〈7, 1, 3, 10, 12, 4, 5, 6, 9, 11, 2, 8〉

ICM with 12–24–1 〈7, 11, 9, 10, 12, 6, 8, 3, 1, 2, 5, 4〉 contribution of variables:

architecture 〈28.1, 14.28, 10.31, 10.3, 9.82, 6.65, 5.95, 5.95, 3.26, 2.92, 1.71, 0.73〉
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