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Abstract: The main drawback of "classical" fuzzy systems is the inability to design and 
maintain their database. To overcome this disadvantage many types of extensions adding 
the adaptivity property to those systems were designed. This paper deals with one of them a 
new hybrid adaptation structure, called gradient-incremental adaptive fuzzy controller 
connecting gradient-descent methods with the so-called self-organizing fuzzy logic 
controller designed by Procyk and Mamdani. The aim is to incorporate the advantages of 
both principles. This controller was implemented and tested on the system of LEGO robots. 
The results and comparison to a 'classical' (non-adaptive) fuzzy controller designed by a 
human operator are also shown here.  

Keywords: Fuzzy adaptive controller, Gradient-descent methods, Jacobian, Gradient-
incremental adaptation. 

1. Introduction 
Fuzzy logic has found many successful applications, especially in the area of 
control, but there are some limits of its use that are connected with the inability of 
the knowledge acquisition and adaptation to changed external conditions or 
parameters of the controlled system. To overcome this problem there were 
published lots of papers, e.g. [4, 9, 10], which deal with structures of Adaptive 
Fuzzy Controllers (AFC) using mostly approaches based on many variations of 
gradient-descent methods, the least square method [8], linear and non-linear 
regression or the linguistically based rule extraction. Of course, this list would be 
incomplete without mentioning neural networks and evolutionary algorithms [13]. 
 
Further, we will focus our attention only on 'pure' AFC. The main reason why to 
deal with this type of AFC is that they are with their nature and calculus the most 
similar systems to the non-adaptive (classical) FC. The properties of FC are well 
known, more than in the case of neural networks or genetic algorithms, in general. 
Fuzzy logic is able to simulate the human vague thinking very efficiently and 
therefore it seems to be very advantageous only to add the ability of the 



knowledge acquisition to 'classical' fuzzy systems and nearby to preserve their 
properties. 
In this paper we will show the design of a hybrid control structure compound from 
two essential adaptation ways the well known Gradient-Descent Adaptation 
(GDA) and the so-called Self-Organizing Fuzzy Logic Controller (SOFLC) 
proposed by Procyk and Mamdani [11] with the aim to connect their advantages. 
In the section 6 we will show the implementation of this controller into the LEGO 
robots as well as some experiments with the evaluation of its efficiency. 

2. Adaptation principles of fuzzy controllers 
The adaptation task of FC consists in the adjusting parameters of its knowledge 
base to fulfill the general goal of control, i.e. to eliminate the difference between 
the desired w(k) and real output y(k) of the system to be controlled. In other words 
to eliminate the control error e(k)=w(k)-y(k) (k as sampling step related to the time 
t, t=T.k where T is the sampling period). Other criteria concerning, e.g. transition 
time, energy consumption, overshoots, etc. can be taken into consideration, too. In 
principle, the values of knowledge base parameters can be obtained in two ways: 
either by identifying the parameters of the controlled system or by measuring the 
control quality. The first way defines the so-called  parameter-adaptive systems 
and the second one performance-adaptive systems. In the first case, the 
information about the controlled system obtained in such a way is then to be 
transformed into the form of fuzzy rules of the controller. Therefore the methods 
of this kind are known as indirect methods, too (see [1, 6]). The performance 
adaptive systems transform the measured control quality directly to the controller 
parameters excluding the need of the system identification. They enable also to 
include another criteria where the minimal control error (control task) seems to be 
only a special criterion. 
 
The methods mentioned in the above are able to adjust either the parameters of 
membership functions (MF) or structure of rules or both. Mostly, they differ from 
the calculus used or other restriction conditions (type of MF, rule structure, etc.). 
However, most of them are based on minimizing the control error. As a gradient 
determines the shortest "descent" of this error in accordance on the knowledge 
base parameters it seems to be the most powerful adaptation method if there are no 
such application-dependent circumstances avoiding its use. SOFLC is also a 
special form embedding this calculus since it utilizes Jacobian what can be seen 
very clearly in (4). In the following we will describe both GDA and SOFLC used 
in our hybrid structure that can be included to direct methods.  
 
 



3. Gradient-descent based adaptation of the 
knowledge base 

Each GDA is based on searching for a minimum (in the best case for the global 
one) of the error function E(k). We will define it as E(k)=e(k)2/2 and for the sake 
of simplicity we will omit the sampling step k in several formulae. Individual 
methods differ from one another by searching the minimum, defining the learning 
factor or other restriction conditions concerning, e.g. the shape of MF, etc. We 
will describe two ways of GDA here. 
 
Let us consider a TSK controller (Takagi-Sugeno-Kang) with n inputs xi and one 
output u of the j-th constant value bj (u=bj) with the product operator as the 
aggregation operator as well as MF in the symmetrical triangular form 
characterized by its center ai,j and support si,j (limit points of the support are ai,j-
si,j/2 and ai,j+si,j/2) where i and j denote the i-th input and the j-th linguistic value 
for this input, respectively [2]. 
 
If there each input variable xi has li linguistic values and the output variable m 
values then we will get in total m + 2.TN parameters where TN = ll + … + ln is the 
total number of input MF. It can be proved their partial derivatives are in the form 
of (1) [5] where p = 1, ..., Nbj refer to all rules with the consequent bj and p = 1, 
…, NAij to all rules with MF Ai,j in their premises. Nr is the total number of rules 
and αp is the strength of the p-th rule. 
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It is evident the knowledge base parameters to be adjusted are ai,j, si,j and bj. If we 
compute partial derivatives of E(k) by these parameters in each sampling step k 
then considering the well known properties of the gradient we will get for next 
step k+1 the following values of ai,j, si,j and bj as shown in (2). 
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where Ka, Ks and Kb are the learning factors. 
 
If we introduce an additional condition of maintaining fuzzy partitions and ai,j < 
ai,2 < … < ai,li [3] then the support si,j will be given by ai,j+1 – ai,j-1 and the system 
of equations (1) will be modified as described in (3) where r = 1, …, Nr.  
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This method in contrast to (1) avoids generating uncovered parts of the universe of 
discourse by MF and shows mostly a better convergence. Further, the total number 
of parameters is Nr + TN and in most cases less than in (1) (if m + TN > Nr). 



4. Structure of SOFLC 
The control circuit with a performance-adaptive AFC known as SOFLC is shown 
in fig. 1. As already mentioned this structure enables incorporating also another 
criteria than only the minimal control error. 
 
Control criteria are contented in the block of performance measure where the 
quality is evaluated by the performance index p(k) which expresses the magnitude 
and direction of changes to be performed in the knowledge base of the controller. 
The basic design problem of AFC consists in the design of M, where for each time 
sample t=K.T (K=0,1, …) a simplified incremental model of the controlled system 
M=J.T (J - Jacobian) is computed. It represents a supplement to the original model 
to reach a zero control error and is analogous to the linear approximation of the 
first order differential equation or in other words to gradients, too. As Jacobian (4) 
is a determinant of all first derivatives of the system with n equations f1, …, fn of n 
input variables x1, …, xn it means J is equal to the determinant of the dynamics 
matrix, i.e. it is a numerical value describing all n gradients in the sense of a 
characteristic value. 
 

 
 

Figure 1: Self-organizing fuzzy logic controller. 
 
Now we need to transform this incremental description of a controlled system to 
the description of a controlling system, i.e. a controller. Considering the properties 
of the feed back connection we can see that y(k) ≈ e(k) (w(k) is known). As inputs 
and outputs of a controlled system change to outputs and inputs of a controller, 
respectively we can get the controller description like the inverse function of y(k) 
= fM(u(k)), i.e. the model of the controller is u(k) = f-1

M(y(k)). Because J is a 
number, then M-1 is the reverse value of J.T. The reinforcement value r(k) is 
computed as r(k) = M-1.p(k). 
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The knowledge base adaptation can be either relation-based or rule-based. For our 
purposes we will use the second way of adaptation. In general (for both methods), 
it is based on removing such rules Rnew(k) that caused a 'bad' control in the 
previous time step Rbad(k) and including new 'reinforced' rules, i.e. for next time 
step k+1 we will get: 
 

)())()(()1( kRkRkRkR newbad UI=+ (5) 
 
Each fuzzy rule rp (p = 1, …,Nr) of n inputs and one output represents their 
Cartesian product and is also a fuzzy relation Rp = A1,p  x … x An,p x Bp. The 
knowledge base R is then a union of such rules (fuzzy relations) and after 
substituting into (5) it will be changed to (6). Rbad(k) can be a union of all 
previously fired rules, too. However, for the sake of simplicity we will consider 
only one rule with the greatest strength α and therefore Abad

1 x … x Abad
n is its 

premise. Reinforcement value r(k) corrects only the consequent of such a rule and 
B Bnew is the fuzzified result of y(k)+r(k), i.e. fuzz(y(k)+r(k)). The simplest 
fuzzification is in the form of singletons but in general, other forms are possible, 
too. 
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5. Hybrid gradient-incremental adaptive fuzzy 
controller 

In the above-described methods have their advantages and also drawbacks. GDA 
should be the fastest adaptation and it should converge after the minimal number 
of steps. However, there are two basic problems. First, an error function E(k) may 
be of a complex shape and hereby characterized by a number of local minima. It is 
very difficult in advance to estimate their number and possible place of the global 
minimum, i.e. optimal solution. Further, the absence of such estimation disables 
the determination of the learning factor value, too. If it is too small the 
convergence will be too slow and if it is too big there will be a risk the global 
minimum will be 'jumped over'. Secondly, there is possibility to minimize only 
one criterion – error function but in the practice there are also other control 
criteria. SOFLC is more practice-oriented but it is sensitive to external signals 
such as disturbances, noises and set-point changes because of their inability to 
distinguish whether the parameters of the controlled system are changed or an 
external signal entered the system. A negative effect can occur if the adaptation 
proceeds although it is not more necessary. So some wrong changes in the 
knowledge base may be performed. This state is caused by the wrong 
understanding if e.g. an external error occurs and AFC will evaluate it as a 
parameter change. Therefore, we tried to connect these two methods to one hybrid 
MISO structure to avoid their drawbacks as seen in the fig. 2 and named it as 
Gradient-Incremental adaptive Fuzzy Controller (GIFC). 
 

 
 

Figure 2: Structure of a gradient-incremental adaptive fuzzy controller. 
 
The adaptation process can be described in following steps: 

1. Definition of input and output variables 
2. Defining of term sets for variables in the step 1  



3. Design of initial membership functions (not necessary) 
4. Processing GDA by (3) until the threshold of e(k) is reached 
5. Processing SOFLC until the control error is greater than the threshold of 

e(k) 
6. Processing GDA by (1) until the threshold is reached and repeated switching 

to the step 5 
 
The main idea is that GDA is the fastest method if the threshold of the control 
error as the most important criterion is not too strict. In such a case we can choose 
a greater learning factor and speed up the adaptation. After this 'rough' adaptation 
we can switch the control to SOFLC to minimize the control error to be as small 
as possible and at this same time to include other criteria, too. GDA by (3) 
maintains fuzzy partitions. This condition owns several suitable properties but on 
the other hand side it is certain restriction in the adaptation process. Therefore, 
SOFLC does not hold this condition. However, if the control error increases again 
it will not more possible to switch adaptation to GDA by (3). From this reason it 
will be switched to GDA by (1). 
 
From (6) it is evident the so-called problem of rule expansion can occur as each 
'bad' rule can be replaced by up to n+1 new rules, i.e. if in each step just one rule 
is replaced the knowledge base will be expanded by n further rules. To prevent 
this effect a garbage collection mechanism was designed. Its task is to remove 
replaced and identical rules. If there are rules with identical premises but different 
consequents occur the older rule will be removed. 

6. Experiments 
The proposed hybrid control algorithm GIFC was implemented and tested on 
LEGO robots. Its results were compared also with a non-adaptive FC designed by 
a human operator. The control task was the so-called parking problem, i.e. to park 
a mobile robot at a given place and direction. This task was solved with and 
without obstacles. The process monitor (see fig. 2) evaluates the parking process 
by two criteria: parking error EP - more important corresponding with the control 
error and trajectory error ET- considered only in SOFLC which is computed as 
division of the real trajectory length and optimal trajectory length. The optimal 
trajectory is the shortest distance between the robot and the goal. The first 
criterion is in the form: 
 

(7) 222 )()()( yyxxE fffP −+−+−= φφ 
where (x,y) are coordinates of the robot φ is the turning angle of wheels and (xf, yf, 
φf) are position and direction of the goal (parking place). Similar description is 
used for starting (initial) points, too. 
 



In the case of obstacles the strategy of their avoiding depends on two light sensors. 
The existence of an obstacle is determined (supposed) if the light intensity of at 
least one sensor decreases under given threshold. There are two possibilities either 
the left or right direction and such a direction is chosen where the light intensity is 
higher. It supposes this way is shorter than another one to go round the obstacle. If 
the light intensity of both sensors is equal then the direction may be chosen 
randomly. In this case it is possible to define still one criterion - number of 
impacts on the obstacle. 
 
In figures 3, 4 and 5 results of several experiments for different starting points are 
depicted. 

 
 

Figure 3: Comparison of trajectories for a non-adaptive FC (20, 80, 260) (a) and 
GIFC (20, 80, 260) (b). 

 

 
 

Figure 4: Comparison of trajectories with an obstacle for a non-adaptive FC (60, 
70, 150) (a) and GIFC (80, 80, 260) (b). 

 
In the table 1 we can see that first two criteria EP and ET are better fulfilled at a 
non-adaptive FC. There are two reasons. First, EP and ET are not totally 
independent. Both are quantitative and EP influences ET directly proportionally. If 
EP increases then also the trajectory will be more different from the optimal length 
but the shape may be in spite of that of 'better' what is also this case. It can be seen 
especially at the obstacle avoidance fig. 4 and 5. This assertion is supported by a 
smaller number of impacts at GIFC than at non-adaptive FC. Secondly, reinforced 



rules are fired till in next steps after the error already occurred and in such a way 
delay influences the efficiency of GIFC negatively. Shortening the sampling 
period T can eliminate this problem. There are only hardware limitations. 
 

 
 

Figure 5: Comparison of trajectories with an obstacle for a non-adaptive FC (80, 
80, 260) (a) and GIFC (40, 80, 110) (b). 

 
Type EP ET Number of impacts 
NAFC 0.407 1.131 - 
GIFC 6.545 1.162 - 
NAFC 0.568 1.450 3.15 
GIFC 4.706 1.521 1.33 

 
Table 1: Comparison of the control quality for non-adaptive FC (NAFC) and 

GIFC. 

Conclusions 

The principal advantage of this approach is the substitution of a human expert in 
the design of a fuzzy controller, which is the most serious disadvantage of 
standard fuzzy systems. The design presented enables fuzzy systems to move in an 
unknown outer area that can be changed, e.g. autonomous vehicles among 
obstacles. Experiments showed that the most important criterion of number of 
impacts is better than at non-adaptive FC designed by a human operator. The 
quality of other two criteria may be improved by reinforcing the garbage 
collection mechanism. Many rules are not yet removed from the knowledge base 
and they are more information noise than contribution. It is possible to improve it 
by removing rules with MF their average grade of membership is small further by 
merging rules with similar premises or by considering partial contradiction of 
rules with identical premises. 

This experiment only demonstrated potential of such a method. It seems there may 
be many application cases of its use, for instance in aviation like discussed in [7] 
or in situational control [9]. 
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